
1

Multi-Interface Connectivity On Modern Mobile
Devices

Varun Anand

Abstract—Modern mobile devices are equipped with multiple
network interfaces such as Wi-Fi, 4G, bluetooth, NFC and others.
However, current software allows us to use only one of them at
any given time. This is done by assigning a static priority to
each interface, and enabling the one with the highest priority
among the interfaces available. This causes unnecessary network
disruption especially since the users could be mobile, and does
not provide a seamless experience that is desirable.

INTRODUCTION

Imagine Alice leaving her office after work. Her daily
routine involves listening to her favorite podcasts on her drive
home. However, she always forgets to download them in
advance. On her way out, she starts downloading a few of these
podcasts. But the moment she steps into the elevator, her Wi-
Fi signal is lost. This breaks the previous network connection,
requiring her to restart the download on her mobile (4G) data
connection. This is both a waste of her data connection, and
delays the download of Alice’s podcasts significantly. As soon
as she reaches home, her phone connects to her Wi-Fi network
at home. This stops her downloads again, potentially requiring
her to restart some of them. This scenario resulted in multiple
disruptions to the downloads while all through Alice’s phone
had data connectivity via one or more network interfaces. The
ideal solution for Alice’s problem would be to make use of all
or a subset of the available network resources as per Alice’s
choice to give her a seamless user experience.

THESIS QUESTION: Can we enable concurrent use
of multiple network interfaces for a single connection
on mobile devices in an efficient and seamless manner?

DESIGN OBJECTIVES

• Restrict modification to the client system: Our design
should not require any changes at the server end.

• Support existing apps: We want to provide the same
interface to the existing applications, so that they don’t
need to modify their implementation.

• Seamless user experience: As mentioned in the sce-
nario above, users should be oblivious to the network
dynamics, especially when they are mobile.

Varun Anand is a graduate student with the Department of Computer
Science and Engineering, University at Buffalo, SUNY, NY USA webpage:
(see http://www.varun-anand.com). This report is a condensed version of the
Thesis work defended on May 08, 2014

Thesis Advisors: Karthik Dantu, Steve Y. Ko and D. Koutsonikolas. E-mail:
{kdantu,stevko,dimitrio}@buffalo.edu

• Efficacy of network usage: We should be able to
make the best use of available network interfaces i.e.,
ideally, our observed throughput should be the sum of
the throughputs of the used network interfaces.

DESIGN

Our design was driven by the objectives listed above. We
chose to incorporate our changes to the Android Open Source
Platform. We also decided to take advantage of the HTTP
protocol to enable multi-interface connectivity. The reason for
these choices are described below.

HTTP Protocol
Recent studies have shown that HTTP protocol dominate

today’s data traffic on smartphones. HTTP plus HTTPS ac-
count for more than 80% of the traffic on smartphones [1] and
are about 97% of the handheld traffic as observed by campus
Wi-Fi networks [2]. Given the predominant use of the HTTP
protocol, we decided that this would be an ideal layer in the
network stack to incorporate our changes.

The HTTP protocol provides an option for requesting data in
byte-ranges. We leverage this feature to concurrently maintain
multiple open connections and use as many active interfaces
available at a given time per download. Currently, we maintain
one connection per interface. By utilizing existing features of
HTTP (such as byte-range request) we restrict our modifica-
tions to the client.

Android
We demonstrate our ideas on the Android Open Source

Platform. Android has grown in popularity over the last few
years and has become the dominant mobile platform for
smartphones and tablets. It is also open-source allowing us
to make the changes required.

To achieve our goals, we had to make several modifications
to the Android Framework. Listed below are the major modi-
fications.

CONTRIBUTIONS

This thesis makes the following contributions:
• Android, like most mobile platforms, gives preference

to Wi-Fi over cellular interfaces such as 3G or 4G. Our
first modification was to make changes to the framework
as well as set up per interface routing tables to enable
the use of multiple network interfaces concurrently.

• We have made changes to the HttpUrlConnection library
to allow it to utilize multiple network interfaces such as



2

wi-fi and cellular data connectivity simultaneously for a
single request.

• In our intent to maintain the same abstraction to apps,
we had to buffer downloads in the HttpUrlConnec-
tion library. As a consequence, our system provides
the ability to resume stalled connections when all the
network interfaces on a mobile device are unavailable
intermittently.

• The use of HTTP range requests allows our system
to break a download into smaller chunks that can be
downloaded by multiple interfaces in parallel. Increasing
the chunk size increases the latency observed by the
app, particularly on slow connections. Decreasing the
size increases the overhead observed by our system.
We identified Wait Time as a tuneable parameter that
balances this tradeoff and allows for network interfaces
with disparate network speeds to download chunks in
parallel while keeping the app observed latency constant.

• We also discovered overheads when we enabled byte
range requests in HTTP. By utilizing the pipelining
feature in HTTP, we eliminated this overhead and
demonstrate efficient use of multiple network interfaces
concurrently.

• With extensive experimentation, we study the utility of
each of our modifications, and finally demonstrate con-
current usage of two network interfaces with negligible
overhead.

CHALLENGES

The challenges we faced could be broadly classified under
two headings.

Managing multiple interfaces concurrently

Our implementation provides a mechanism to enable con-
current use of multiple network interfaces. We make use of
multiple kernel routing tables and add new functionality to
the ConnectivityService component of the Android
Framework. Together, they observe the network dynamics
and enable all the available network interfaces at any given
time. Figure 1 shows the high level changes made to the
ConnectivityService component.

Maximize bandwidth utilization using HTTP

Once we had the platform that could support multiple in-
terfaces concurrently, we studied ways to utilize the interfaces
efficiently. Figure 2 shows the high level changes made to the
HttpURLConnection library.

EXPERIMENTAL VALIDATION

Through extensive experimentation, we analyze the utility
of all our changes and demonstrate that our system achieves
the design objectives we listed initially.

Fig. 1. Changes made to the ConnectivityService component

Fig. 2. Changes made to the HttpURLConnection library

Efficiency
Figure 3 shows the individual as well as the combined

average throughput over 4G and WiFi interfaces. The results
shown are averaged over twenty trials each. We downloaded a
100MB file, and shown in the figure are the average download
speeds as well as the variance observed.

The combined throughput with both interfaces enabled is
slightly greater than the sum of the individual throughputs
observed over 4G and WiFi. Firstly, this demonstrates that
we can utilize multiple network interfaces concurrently, and
with minimal overhead. We attribute the slight increase in
throughput to the large variance in the WiFi network.

Seamlessness
Figure 4 demonstrates seamlessness and resumability pro-

vided by our system. We downloaded a file of 500 megabytes



3

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

Both WiFi 4G

A
v
e
ra

g
e
 T

h
o
u
g
h
p
u
t 

(b
y
te

s/
se

c)

Bar graph view of throughput over 4G, WiFi and Both interfaces enabled

Mean value

Fig. 3. Combined average throughput

Fig. 4. Results for seamlessness with resume capability

over WiFi and 4G interfaces and plot the throughput over both
the interfaces with time. We label 4 different regions according
to the connectivity change observed by the mobile device. We
clearly see the seamlessness provided by our implementation.
Even though the network characteristics are changing, our im-
plementation makes use of all available interfaces to download
the file without the need for user intervention. Furthermore,
when all the interfaces are down, our implementation buffers
the previously downloaded portion of the file and waits until
the network conditions change. It then resumes the download
and completes it.

REFERENCES

[1] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula,
D. Estrin, A First Look at Traffic on Smartphones, In
proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement, IMC’10.

[2] A. Gember, A. Anand, A. Akella, A Comparative Study
of Handheld and Non-handheld Traffic in Campus Wi-
Fi Networks, In proceedings of the 12th International
Conference on Passive and Active Measurement, PAM’11.


