Bary,: Collaborating Through Change

Oliver Kennedy and Lukasz Ziarek

SUNY Buffalo
{okennedy, Iziarek}@buffalo.edu

Abstract

Applications such as Google Docs, Office 365, and Dropbox show
a growing trend towards incorporating multi-user collaboration
functionality into web applications. These collaborative applica-
tions share a need to efficiently express shared state, typically
through a shared log abstraction. Extensive research efforts on
log abstractions by the database, programming languages, and dis-
tributed systems communities have identified a variety of analy-
sis techniques based on the algebraic properties of updates (i.e.,
pairwise commutativity, subsumption, and idempotence). Although
these techniques have been applied to specific application domains,
to the best of our knowledge, no attempt has been made to create a
general framework for such analyses in the context of a non-trivial
update language. In this paper, we introduce monadic logs, a se-
mantically rich state abstraction that provides a powerful, expres-
sive framework for reasoning about a variety of application state
properties. We also define Barg, a general purpose state-update
language, and show how the monadic log abstraction allows us to
reason about the properties of updates expressed in Barg . Finally,
we show how such analyses can be expressed declaratively using
the SPARQL graph query language.

1. Introduction

Many web applications have been released that improve on the
functionality of desktop applications (e.g. Google Docs). Collab-
orative functionality is a natural consequence of this shift from
the desktop to the web. Fully featured word processors, presen-
tation editors, spreadsheets, and drawing programs now exist that
allow users to simultaneously edit, view, and annotate documents
in “real-time.” Although these collaborative applications are struc-
tured using a client/server model, the core functionality of the ap-
plication is typically built into the client. The server’s primary role
is to relay state updates between clients. In spite of this apparent
structural simplicity, developers continue to expend considerable
effort to achieve infrastructure scalability through specialization.

To address this concern, we present the theoretical foundations for
a generalized, yet performant server infrastructure for collabora-
tive applications: Laasie'. Laasie clients are application front-ends,

! Log-As-Application-State InfrastructurE

[Copyright notice will appear here once ’preprint’ option is removed.]

each maintaining and mediating access to a local replica of the
global application state. Clients post state updates to the Laasie in-
frastructure, which defines a canonical order over the updates that it
receives, and ensures delivery of updates to all participating clients.

A primary goal for this infrastructure is to give application devel-
opers a way to easily formulate and assert properties over both
global and client state. For instance, our infrastructure can assert
that clients provably recover from link failures (e.g., when the host
platform changes networks or after it wakes from sleep mode). Re-
coverability is expressed as a “replay,” or re-execution of the up-
dates stored within the log, and parameterized by the state from
which recovery is initiated.

To achieve generality in reasoning about such properties, our for-
mal model expresses updates in terms of infent rather than effect.
The resulting log encodes application state updates in a functional
form, storing the computation itself rather than its effects. We call
such logs monadic, as they precisely encode a sequence of global
state transformation monads. Properties are inferred via program
analysis of the computation encoded within the log. This structure
allows properties like recoverability to be stated declaratively, and
asserted over the log through automated reasoning techniques.

One use of such properties is to provide a general equivalence class
of monadic logs over which that property holds. We observe that
meaning-preserving equivalence classes of transforms of monadic
logs define the possible structural representations of a computa-
tion’s state. An implementation would, therefore, be free to pick
the representation that most adequately satisfies its performance,
security, and/or behavioral requirements. We introduce a general
framework for reasoning about transforms over monadic logs and
consider two properties for each transform: (1) Tail-Correctness, or
whether the transformed log generates a state identical to the orig-
inal sequence of updates, and (2) Recoverability, or whether the
transformed log can synthesize the most recent state from a given
previous state. In addition to reasoning about these properties in
the abstract, we show a concrete expression of both properties via
SPARQL queries issued over a graphical representation of the log
and its contents.

To drive our discussion of monadic logs, we introduce an exam-
ple monad language: Barg., an update language that can express
conditionals and iteration over complex hierarchical datatypes. Up-
dates expressed in Barg . are not evaluated, but rather appended to
a monadic log. The consequence of this is a simplified semantics
for out-of-order appends and encoding of updates as increments
(i.e., deltas) rather than fixed writes (e.g., var := 3). In short,
Barg allows the operational semantics of updates to be managed
functionally as first class monads.

By showing that we can assert a range of properties over monadic
logs built on a non-trivial language like Barg -, we show the poten-
tial for monadic logs in real world systems.

2013/8/20

The contributions of this paper are as follows:

1. The formal definition of monadic logs, a novel monad-based
representation of application state, along with provable safety
properties for log transforms.

2. An exploration of monadic logs, where transforms necessary
for log compaction are identified, necessary conditions for their
tail-correctness and recoverability are proven, and program
analysis is used to efficiently identify viable log transforms.

3. An extension of preliminary work on Laasie [6], with a precise
specification of Barg,: a language for transforming weakly
typed complex data, and a reduction to a fine-grained incremen-
tal representation of Barg..

4. The use of graph queries, formulated in SPARQL, to assert
global properties about the log with respect to local properties
of each log entry, obtained through program analysis. Thus, log
properties are expressed declaritvely and asserted structurally.

1.1 Roadmap

We begin in Section 2 with a formal definition of monadic logs, and
define the fundamental semantics of monadic log transforms. We
demonstrate the benefits of the monadic log representation by ex-
ample in Section 3, through a nontrivial state management task: log
compaction with recoverability. We define two specific log trans-
forms for compaction, two safety properties for log transforms: tail-
correctness and recoverability, and two abstract relations over log
entries: pairwise commutativity and subsumption. We show how
these two relations can be used to assert the safety properties of the
two log compaction transforms.

To make these properties concrete, we introduce a simple, but non-
trivial monad language named Barg . in Section 4. This language,
loosely based on the Monad Algebra, is amenable to the sorts of
program analysis required to assert the safety properties presented
in Section 3. In Section 5, we reduce Barg, to a simplified in-
cremental form that provides a fine-grained view of the effects of
each monad, and show how this fine-grained view can be used for
program analysis.

Finally, in Section 6, we return to the log compaction problem and
show how the safety properties for recoverability can be asserted
over logs of Barg, monads through properties obtained by pro-
gram analysis. We then show graph based definitions of commu-
tativity and subsumption that can be derived structurally from the
log. Lastly we show the assertion of safety of log compaction trans-
forms via simple queries over these graph based representations.

2. Monadic Logs

A popular strategy for state replication and persistence [10, 13, 32,
36] is to log a history of operations applied to the application’s
state. Logs present a convenient abstraction for state replication, as
the primary challenge of coordination is reduced to establishing
a canonical order over state updates. Each client can update its
local state replica by replaying operations as they are appended
to the log. Logs are also extremely appealing for the purpose of
analytics. A log illustrates the full evolution of an application’s
state as it is used. Developers can examine how users interact with
their applications, users can revisit past versions of the state, and
temporal relationships can be used to define access policies.

To maximize the analytical potential of a log, care must be taken to
record not just the effects of an update, but also any metadata rele-
vant to the analysis. For example, building a policy based on prove-
nance (e.g., to implement a taint-tracking system) requires logging

policy-specific provenance metadata in the log. A more complex
analysis may require additional metadata, and some analyses may
not be possible if they require metadata that has not already been
collected. Notably, current systems specialize the log and metadata
structure to the application domain supported by the system. Ex-
panding systems to support additional analyses or application do-
mains is often difficult if not outright impossible.

Instead, we propose a generalized logging strategy that provides
an expressive framework for analysis of an application’s execution,
while being agnostic to the application domain. To achieve general-
ity, our proposed framework logs each update as a function, rather
than as the effects of applying that function to the state. That is,
each update is recorded as a state transformation monad. We re-
fer to the resulting structure as a monadic log. Monadic logs also
give developers an additional degree of flexibility in manipulating
application state. Consider the following potential applications:

Compaction with Provable Recovery. Although an append-only
log is a useful high-level abstraction, in practice it is necessary
to compact the log to bound its size. This is typically done via
a snapshot of the application state that is substituted for all log
entries that precede it. Unfortunately, eliminating all log entries
preceding the snapshot also invalidates all clients who’s local views
correspond to a state prior to the snapshot. Such clients must be
restarted from scratch, negating the benefits of a log. Conversely,
monadic logs explicitly contain all information necessary to merge
log entries. For example, an overwriting update to an object that
has not been read since its last update can be merged with its last
update, such that only the most recent update is kept.

Log Views. An application might have a secondary client: a toolbar
widget that displays aggregate values (e.g., an unread message
count). This application requires only a simplified aggregate view
of the application state. A log encoding application state can be
transformed into a log manipulating the view by a delta transform.

Retroactive Policy Enforcement. Write access policies can be
enforced by deleting log entries that violate the access policy. Such
policies can be applied retroactively with minimal performance
overhead, because each log entry encodes the full semantics of
its update. The effects of deleting or modifying an log entry are
immediately propagated through all subsequent log entries.

Obfuscated Collaboration. A policy that obfuscates private data
(e.g., by adding a random factor) for unauthorized users does not
prevent authorized and unauthorized users from collaborating. Al-
though each user sees a distinct view of an application’s state, up-
dates applied to the anonymized view can be seamlessly applied to
the original data, making them visible to authorized users as well.

Each of these examples can be implemented by applying a log-
based transform to the application’s state. Such transforms can be
applied directly by Laasie, and do not require fundamental changes
to the application’s code. Prior to introducing log transforms, we
first describe the log itself.

2.1 Formalism

We begin by formally defining a monadic log as a sequence of state
transformation functions, or monads.

Definition 1. Let the type T represent an application’s state, and
M be a family of monads over 7, M C 2777, A monadic log
L(M, T) is defined by a sequence of monads m; € M. A monadic
log may be represented in three ways:

1. As the raw sequence of monads [ma, . .., my].

2013/8/20

2. As the composition of these monads (by convention from left to
right) mi o...omy = Ax.ma (... (ma(x))).

3. As the state obtained by evaluating the composition on a default
initial value vo: My (. .. (m1(vo))).

Because these representations have clearly distinct types and can be
easily generated from the initial list representation, for prospecuity
we use them interchangeably. The appropriate representation will
be clear from the context in which it is used. The size of a monadic
log (|¢]) is the arity of the monad sequence.

This relatively straightforward state representation can provide
a wealth of information: provenance, intermediate states, and
privacy-loss (e.g., as in differential privacy) can all be computed
from the log through program analysis. Furthermore, because the
full application semantics are embedded in the log, such analy-
ses can be performed without needing to pre-provision analysis-
specific metadata. Although in this paper we deal with the theo-
retical underpinnings of monadic logs, a preliminary exploration
of their feasibility and performance characteristics has shown that
they are a viable replacement for standard log-based state replica-
tion mechanisms in real-world systems [6].

A monadic log provides an added degree of freedom for application
developers to mutate state. Instead of modifying the state directly
(i.e., by applying a new update to the tail of the log), state changes
can be expressed as direct transforms of the log itself.

Definition 2. A log transform: T : (M, 1) — (M, T) maps
one monadic log [mu, . .., my) into another [m?, ..., m.,]

For simplicity, we will consider only size-preserving transforms
(i.e., where || = |T(¢)|). If we assume closure of the monad
language M over composition and the presence of an identity
operation, this can be done without loss of generality. Using a
size-preserving transform allows us to establish a correspondence
between state versions, both before and after the transform.

Definition 3. Let the timestamp i of a monad m,; € { be defined
by the order of monads in the log {.

Definition 4. An intermediate state ¢, is the log consisting of the
first k monads in £: £, = [ma, ..., my]

3. Provable Recovery

Throughout the rest of the paper, we will use log compaction as a
simple, high-level example to illustrate the power of log transforms.
Our theory of log transforms allow us to easily express the notion of
compaction in a more general form than typical checkpoint-based.
We start with the building blocks: two primitive log transforms,
delete and compose, and properties that define when it is safe to
apply these primitive transforms.

Delete. A size-preserving deletion transform is effected by replac-
ing the deleted monad with the identity monad id. The transform
Rae1(z), which deletes monad m is defined as

m/_ my; ’L;éaj‘
Tl id ... t=x

Compose. For amonad language closed over composition, monads
may be merged into a single log entry. The log size is preserved
by inserting an id monad in place of one of the merged monads.
By convention, the composed monad replaces the monad with
the higher timestamp. The transform Rcmp(z,y), which merges

monads m, and m, is defined as

m; v i€ {z,y}
/ . .
m; = id e =
Mg OMy ... T=1Y

These primitives can be used to implement a variety of differ-
ent log compaction strategies. As a trivial example, a checkpoint
at timestamp k can be implemented by applying the transform
Renp(i,2+ 1) forall i < k.

3.1 Safety

Although compaction may change the log itself, it is crucial that
it not change the application state encoded in the log. We now
propose three properties of log transforms that can be used to
assert this safety condition: tail-correctness, recoverability, and -
recoverability. The simplest of these properties, tail-correctness
takes a holistic view of the log.

Definition 5. Given a default initial value vo, a log transform T
is tail-correct if, when applied to an arbitrary log € of size n, the
resulting log ¢ = T({) evaluates to the same value £y, (vo) =

K,L (Uo).

In a practical setting, tail-correctness is insufficient. Consider a
state replica currently at state ¢;. To bring this client up to state £,
it should be sufficient to send log entries m;41, . . . , m,. However,
even if we restrict ourselves to tail-correct log transforms, an error
may still occur. Consider a simple monad language over integers
with a single operation: increment by A ([+ = A]), and a log
containing two entries.

E:m1:[+:1],m2:[+:1}
The transform Tenp (1, 2) produces the log
¢ =m) id,my : [+ = 2]

This transform is tail correct (/> = ¢5). However, a client at state
1 ({1 = 1) before the transform using ¢’ to obtain the ’current’
state (i.e., applying m4 to its local state) will obtain the incorrect
state (m5(€1) = 3). To address this limitation, we define a stronger
correctness property: recoverability.

Definition 6. Given a default initial value vo, a log transform is
recoverable from timestamp i (or equivalently state {;) if the
final state ¢,, of the original log can be obtained by applying the
sequence of rewritten monads following timestamp i to the state {;,
taken from the original log.

(mio...omy)(vo) = (Miyq 0...0mp,)(v;)
Or equivalently (because v; is defined by the original log)
(mio...omy)(ve) =(Mmio...omyomisq0...0mp)(vo)

Definition 7. A log transform is recoverable if it is recoverable
from all timestamps in the log (i.e., i € [0,n]))

Note that tail-correctness is the special case of recoverability from
timestamp 0. The intent of recoverability is to protect disconnected
clients from reaching an inconsistent state when replaying log en-
tries on reconnection. However, to guarantee full recoverability, we
must disregard many useful log transforms. In a practical setting, a
server will not need to guarantee recoverability for all timestamps,
and the notion of recoverability can be relaxed.

Definition 8. Given a set of timestamps 1, a log transform is t-
recoverable if it is recoverable from every t € t.

2013/8/20

By tracking when clients disconnect (regardless of whether or not
the disconnection is transient), the server can identify ranges of
log entries over which non-recoverable log transforms can still be
performed safely.

3.2 Language Properties

We now show how these correctness conditions can be asserted
through properties of the monad language itself. When the latter
properties can be obtained through program analysis, the two prim-
itive transforms can be applied aggressively to the full extent per-
mitted by tail-correctness, recoverability, or {-recoverability. Con-
cretely, we start with two properties of monads themselves: sub-
sumption and pairwise commutativity.

Definition 9. Two monads of the same kind mi and ms are pair-
wise commutative if their compositions are equivalent, regardless
of the order in which they are composed.

C(mi,m2) <= Vz:ma(mi(z)) =mi(ma(z))

Definition 10. A monad mo subsumes a monad of the same kind
m if the effects of m1 are completely screened by ma.

S(mi,ma2) <= Vz:ma(mi(z))=me(x)

Pairwise commutativity and subsumption are relatively straightfor-
ward properties, amenable to being asserted by program analysis. A
language specifically designed for this purpose is discussed below,
in Section 4. We start by showing how to evaluate tail-correctness
for deletion and composition transforms.

Lemma 1. The transform Rqe1(x) is tail-correct if my is sub-
sumed by the aggregate composition of all monads following it:
S(my, (Mgt1 0Magi20...0mMy)).

Proof. The identity operation has no effect on the state, and can be
inserted anywhere. By subsumption, we have that

Mz O...0Mp =Mg410...0My

Thus, 4, = £},. m|

Lemma 2. The transform Reup(, y) is tail-correct for any monad
language closed over composition if my commutes with the aggre-
gate composition of all monads between it and my: C(mg, (Mmz410
...0 myfl)).

Proof. As before, the identity operation has no effect on state.
If x = y — 1, then the merged monads are equivalent to the
separate monads by the associativity of composition. Otherwise,
by commutativity, we have that

Mg O...0My_1 =Mg10...0My—10 Mg

Once m; and m, are adjacent, they can be merged as before. O

We next show how to infer recoverability.

Lemma 3. [f the log transform Rae1 () is tail-correct, it is recov-
erable.

Proof. Recoverability from any state v; s.t. ¢ < x is equivalent to
tail-correctness, because these states are unaffected by the trans-
form. Recoverability when ¢ > x is guaranteed always: The state
v; being recovered from is taken before the transform, and monads
M1, - .,y are identical to their pre-transform counterparts. O

This proof shows a tight coupling between correctness and recover-
ability, and illustrates an intriguing log partitioning. If a transform

only modifies monads that fall within a fixed range, recoverability
“errors” can only occur at states that fall within that same range.

Proposition 1. Let R be a tail-correct log transform, which only
alters log entries at timestamps in the range [z, y|. Monads outside
of this range are unaffected by R.

R is recoverable iff it is recoverable from all states v; € [x,y)

Proof. The proof is identical to that of Lemma 3. O

Lemma 4. The transform Rcmp(m’, y) is recoverable if it is correct,
and if my is idempotent: S(my, my).

Proof. From the commutativity property required to show correct-
ness, we have that mz o...omy_1 = mg410...0mMy_1 0 My.
For all 4 > z, state v; = (mg o ... 0m;)(vy—1). Thus, (mi; o
my)(vi) = (Mg o ... 0mg 0my)(vs). By commutativity, we can
transform this expression as mg11 ... 0 Mg © My © My. By idem-
potence, this is equivalent to the original rewritten expression, and
by Proposition 1 the proof devolves to that of correctness. O

4. Bal‘gg

In this section we introduce Barg., a log-based update language
loosely based on the Monad Algebra with unions and aggre-
gates [28], for generating monadic logs. Barg, is intended to be
simple, expressive, and amenable to program analysis required for
log analytics. After laying out Barg ., we will return to our exam-
ple, and show how program analysis can be used to assert pairwise
commutativity and subsumption in Barg..

Unlike the Monad Algebra, which uses sets as the base collection
type, Barg, uses maps® and has weaker type semantics. Further-
more, Barg is intentionally limited to operations with linear com-
putational complexity in the size of the input data; neither the pair-
with nor cross-product operations are included. In our domain, this
is not a limitation, as the server is acting primarily as a relay for
state. Cross-products can be transmitted to clients more efficiently
in their factorized form, and clients are expected to be capable of
computing cross products locally.

The domains and grammar for Barg~ are given in Fig. 1. We use ¢
to range over constants, p over primitives (strings, integers, floats,
and booleans), k over keys, M over monads (queries), T over types,
v over values of type 7, and 6 over binary operations over primitive
types. The type T operated over by Barg, monads is equivalent
to unstructured XML or JSON. Values are either of primitive type,
null, or collections (mappings from k to 7). Note that collections
are total mappings; for instances, a singleton can be defined as the
collection where all keys except one map to the null value. By
convention, when referring to collections we will implicitly assume
the presence of this mapping for all keys that are not explicitly
specified in the rules themselves.

We formalize Barg, in Fig. 2 in terms of a big-step operational
semantics. Order of evaluation is defined by the structure of the
rules. In Barg . queries are monads, structures that represent com-
putation. Reducing the query corresponds to evaluating the com-
putation expressed by that query. The rules for PrimitiveConstant,
Null and EmptySet all define operations that take an input value and
produce a constant value regardless of input. The rule Primitive-
Constant produces a primitive constant ¢, the rule Null produces
the null value, and the rule EmptySet produces a empty set. We
define an empty set as a collection that is a total mapping, where
all keys map to the null value, represented as: {* — null}. The

2 Maps are also referred to as hashes, dictionaries, or lookup tables.

2013/8/20

¢ € Constant:—p k € Key

p € Primitive M € Monad: 17— T

v € Value T € Type:p|{ki— 7} | null
0 € BinaryOp

M.k| M < M | map M using M | M opjy M
aggy (M) | agg (M) | filter M using M
if Mthen Melse M | MoM |c|null|@

Figure 1: Domains and grammar for Barg ..

Identity operation passes through the input value unchanged. Sub-
scripting and Singleton are standard operations. In comparison to
Monad Algebra, these operations correspond to not only the single-
ton operation over sets, but also the tuple constructor and projection
operations. Because collection elements are identified by keys, we
can reference specific elements of the collection in much the same
way as selection from a tuple.

The most significant way in which Barg differs from Monad Al-
gebra is its use of the Merge operation (<) instead of set union (U).
<= combines two sets, replacing undefined entries in one collection
(keys for which a collection maps to null) with their values from
the other collection:

{A:=1} «{B:=2})(null) ={A—>1,B — 2}

If a key is defined in both collections, the right input takes prece-
dence:

{A:=1} «{A:=2})(null) = {A — 2}

The merge operator can be combined with singleton and identity to
define updates to collections:

(id<{A:=3}){A—1,B—2})={A—3,B—2}

Subscripting can be combined with merge, singleton, and identity
to define point modifications to collections:

(id<={A:=(dA<={B:=2h)} H{A—-{C —=1}})
={A—-{B—2,C—1}} (1)

Primitive binary operators are defined monadically with opera-
tion PrimBinOp, and include basic arithmetic, comparisons, and
boolean operations. These operations can be combined with iden-
tity, singleton, and merge to define updates. For example, to incre-
ment A by 1, we write:

{id={A:=idA+1}}{A—=2})={A >3}

Barg . provides constructs for mapping, flattening and aggregation.
The Map operation is analogous to its definition in Monad Alge-
bra, save that key names are preserved. The Flatten operation is
also similar, except that is based on <, rather than U as in Monad
Algebra. The PrimitiveAggregation class of operators defines ag-
gregation using any closed binary operator # operating over over
primitive type. To increment all children of the root by 1 we write:

(map id using (id + 1))({A - 1,B - 2}) ={A — 2,B — 3}
To increment the child C' of each child of the root by 1, we write:

(map id using (id + {C :=id.C + 1}))(
{A-{C—-1},B—-{C—2,D—1}}
)={A—-{C—-2},B—-{C—=3,D—=1}} (2

Finally, Barg, supports Conditionals and Filtering, as well as
Composition of queries. The rules for these reductions are standard.

4.1 Read-Normal Form

‘We now present a normalized form of Barg ¢, in which the read pat-
tern of a Barg monad (i.e., which collection elements it accesses)
are made more explicit.

Definition 11. A Barg, monad of the form id.k1.k2.(...).kn isa
point read at path ¢ = ki.ko2.(...).kn. A Barg monad is in read-
normal form if subscript operators appear exclusively as part of
point reads, or the subscripting key is the temporary key ‘tmp’.

A valid Barg, query can be converted into read-normal form
by evaluating (i.e., pushing down) every subscript operation. This
evaluation process is presented in Algorithm 1. To obtain a Barg,
expression in read-normal form, the algorithm is applied repeatedly
to reify subscript operators that violate read-normal form. This
fixed-point computation is shown in Algorithm 2.

Algorithm 1 Subscript

Require: m, a Barg, monad.

Require: ¢, a path to subscript. This path may contain wildcard elements
*, which match all keys.

Ensure: m, a Barg, monad such that (m.¢) = mg. For every wildcard
element in the path, one level of collection nesting is created for each key
matched by the wildcard.
if kK = [] then

let Mg <— M
else if m matches (m’ <= m’’) then
let m/,,my < Subscript(m/, ¢), Subscript(m”, ¢)
let mg <« (if mg # null then m else my)
else if m matches {k := m/} then
if ¢ matches k.¢’ then
let my < (Subscript(m/, ¢’))
else if ¢ matches *.¢’ then
let my < ({k := Subscript(m/, ¢')})
else
let my < (null)
else if m matches () then
let my < (null)
else if m matches id.¢’ then
let my + (id.¢'.¢)
else if m matches map m’ using m’/ then
if ¢ matches *.¢’ then
let my < (m’ o Subscript(m”/,¢’))
else
let k.¢' < (¢)
let my < (Subscript(m’,k) o Subscript(m’/, ¢'))
else if . matches m’ o m/’ then
let mgy < (Subscript(m’/[id/m/], ¢))
else if m matches filter m’ using m/’ then

let g < (if Subscript(m/, ¢) o m’ then Subscript(m/, ¢) else null)

else if m matches if m’ then m/’ else m/” then

let my < (if m’ then Subscript(m”, ¢) else Subscript(m’”, ¢))
else if m matches agg[_|(m’) then

let my < ((288[merge) ({tmp = Subscript(m’, ¢)})).tmp)
else

error {m does not produce a collection and can not be subscripted }

2013/8/20

PrimitiveConstant ——— Null — EmptySet — Identity -
c(v) = c null(v) — null O(v) — {* — null} id(v) = v
Subscripting M@) = { k= v,) Singleton M(v) = v

(M.E)(v) — v1

{key :== M}(v) — {k — v1,* = null}

Mi(v) = {ki = vi} Ma(v) = {k;j = v;}

Merge

(MiEM)(v) = {k = v|(k=ki=k;) A (((v=v:) A (v; =null)) vV ((v=u0;) A (vj # null)))}

Mco”(v) — {kl — 'Ui}
Mnap(vi) = v}

Mi(v)—vi:p Ma(v)—wv2:p
9 S {+7*7_7/7:7AND70R7#7<7§7>72}

Map PrimBinOp —

(map M o using Minap)(v) = {ki — v} | vi # null} (M10Ms) (v) — 0100

Flatten Meou(v) = {ki = vi} PrimitiveAggregate Meou(v) = {ki = vi}
(agg|)(Meou))(v) = (vo <= v1 <= ...) (aggg) (Meou))(v) — (((vobv1)fv2)0. . .)
[ThenElse Meond(v) = true Mipen(v) = v1 Meona(v) — false Mese(v) — v1
(if Mcond then Mthen else Melse)(v) — V1 (if Mcond then Mthen else Melse)(v) = U1
,)) /

Filter Meou(v) = {ki = vi} Mecona(vi) = i Composition Mi(v) = vi Ma(v1) — v2

(filter M.,y using Mcona)(v) = {ki = v; | v # null,v; = true}

(M1 o Mz)(v) — V2

Figure 2: A formal operational semantics for Barg ¢ .

Algorithm 2 ReadNormalize

Require: m, a Barg, monad
Ensure: m, a Barg, monad in read-normal form equivalent to m.
while m contains subexpression m’.¢p where m’ # id, ¢ # tmp do
replace m/ in m with Subscript(m/, ¢)

Lemma 5. For any valid Barg, expression, ReadNormalize
reaches a fixed-point that is in read-normal form.

Proof. The rewrites applied by Algorithm 1 are monotonic. For
each recursive step, either ¢ gets shorter, m is simpler (i.e., a sub-
AST of the input), or both. Completeness can demonstrated by the
existence of a rule for pushing down non-temporary key subscript
operator surrounding every other operator, with the following ex-
ceptions: (1) id and other subscript operators are permitted by read-
normal form, (2) ¢, null, é, and agg, each output primitive values,
and are not valid inputs to the subscript operator. a

With a monad in read-normal form, we can see what fragment of
its input the monad reads from.

Definition 12. Given a Barg, monad m, its read set p(m) is
defined as the set of all point-reads not nested within a using
clause.

Monads appearing in the using clause of map and filter are
applied to individual collection elements rather than the entire log
as a whole. Consequently, we treat each of these as reading the
entire collection.

5. Incremental Barg,

‘We now construct a low-level, incremental semantics for Barg . to
aid us in program analysis. These semantics provide a fine-grained
representation of the changes applied to a value by a Barg . monad.

To do so, we distinguish between monads that affect a limited frag-
ment of their input, from monads that could potentially transform
their entire input. We refer to this property as subdivisibility.

Definition 13. A Barg, monad m is subdivisible at path ¢ if
for all values v in the domain of valid inputs for m it holds that
(1) v.¢ and m(v).¢ are both defined and both collections, and
(2) the symmetric difference (/\) between the defined keys of either
collection is of bounded size. That is:

Jevo : [{kl|v.¢.k # null} A{kim(v').¢.k # null}| < €

Subdivisibility effectively allows us to identify a finite subset of
the keys of the collection at ¢ that will be modified. If the root
path [] is subdivisible, we can rewrite the entire monad as a finite
set of smaller monads, each updating either one or all of the root’s
children. This subdivision process can be repeated recursively on
all subdivisible children.

Definition 14. A point update is defined by a 3-tuple:
(6, f,m) s (Fx (7 x 1) = 7) x (- = 7))

e The target path ¢ is a sequence of keys that identifies a nested
collection element to which this update is being applied. In this
sequence, the special wildcard key * corresponds to all (non-
null) values at that point in the hierarchy.

e The combiner function f is a procedure for merging a computed
update value into the value at path ¢ in the input.

e The update monad m computes the update value.

A point update defines a monad that replaces the value at path
@ in the input with the result of evaluating f (id.¢, m(id)). We
call this the equivalent monad.

The purpose of the combiner function is to allow us to express
point updates incrementally. We consider several different com-
biner functions below. For now, let us consider only the replace-
ment function [:=](Vorig, Vupd) — Vupd-

2013/8/20

Indivisible Point-Updates. Naturally, there are a variety of dif-
ferent ways to encode any given Baro, monad in terms of one or
more point-updates.

Definition 15. Given a set of independent point updates U, we
define the equivalent monad of U as the monad constructed by
applying all of the point updates in Uin parallel to their respective
target paths. A set of independent point updates U encodes a
Bargr monad m if the equivalent monad of U is semantically
equivalent to m.

This encoding might be trivial (a replace-by update on the root
value) or extremely detailed (add/multiply by a constant). To take
full advantage of the point-update encoding, we would like it to be
as fine-grained as possible. We capture this desire with the notion
of indivisibility.

Definition 16. A set of paths ® is indivisible for a Barg . monad
m if for all paths ¢ € ®, m is not subdivisible at ¢. We say a point
update is indivisible if its equivalent monad is not subdivisible at
its target path.

Let us consider the effect of each Barg, operation on subdivisi-
bility. Let m be a Barg, monad, ¢ be a path, and v be a value
for which both m and id.¢ are guaranteed to output a collection.
Let keys(v’) be the set of keys in the collection v’. We can clas-
sify m based on the keys in its output as follows: (1) finite (F)
when |keys(m(v))| is independent of v, (2) finitely different (FD)
when the bound on |keys(m(v)) A keys(id.¢(v))| is indepen-
dent of v, and (3) arbitrary, when there is no independent bound
on |keys(m(v)) A keys(id.¢(v))|. For convenience, we estab-
lish the following ordering over these classes: F' < F'D < A.

Proposition 2. Given a Barg, monad m and a path ¢, m is
subdivisible if and only if m.¢ is finitely different.

Given a monad m in read-normal form, we can determine its class
recursively as follows. For path ¢, a point-read at ¢ is in F'D, while
a point-read at ¢’ # ¢ is in A. Filter and Flatten both restructure
their inputs and are in A. The remaining collection-typed leaves
are Assignment and EmptySet, as both produce collections of finite
size.

The map operation does not alter the key-set of its input, and thus
map m’ using m’’ has the same class as m’. Because classes are
defined in terms of upper bounds, the if construct takes the worse
(greater) class from its two clauses. Finally, the merge operation
combines keysets similarly: a monad in F merged with a monad
in F'D produces a finite number of changes to the F'D monad’s
keyset. A monad in A already has an unconstrained keyset. merging
it with a monad in F or F'D will not introduce new constraints,
leaving the result in A.

Subdividing a monad. Baro, monads are converted into incre-
mental Barg . by a simple subdivision process, where we first iden-
tify a set of indivisible paths to divide it into. This set must be suf-
ficient to properly convey the semantics of the complete monad.

Definition 17. A set of paths ® is a complete mask for a Barg,
monad m if for any value v in the domain of valid inputs to m with
v = m(v), for every path ¢ defined in v or v, either ¢ or one of
its ancestors is in ® (i.e., 3¢'.¢" = ¢ : ¢’ €), orv.¢p = V..

The first step in the process of subdividing a Barg monad m is to
obtain a set of paths that are both a complete mask and indivisible
for m. This process is shown in Algorithm 3.

Algorithm 3 IndivisibleKeys

Require: m, a Barg, monad in read-normal form.

Require: ¢, the path prefix being explored (default empty).

Require: returnAdjustedPathset false if the caller needs detailed in-
formation about ¢ and will distinguish based on class, true if ¢ should
be adjusted accordingly instead (default true).

Ensure: class € F, FD, A

Ensure: ®, a set of paths that is a complete mask and indivisible for m.
let (m <...=myp) < m
let class <+ F
for i € [1,n] do

if m; matches id.¢ then
let ® « {}; class < F'D
else if m; matches id.¢’ s.t. (¢ # ¢) or agg[|o)(m’) then
let & < {¢}; class < A; return {Skip indivisible leaves.}
else if m; matches k := m/ then
let ® <+ ® U IndivisibleKeys(m/, ¢.k, true)
else if m; matches map m’ using m’’ then
let class’, &’ = IndivisibleKeys(m/, ¢, false)
class = max(class, class’)
for all ¢’ € &' do
for all ¢’ € IndivisibleKeys(m”,[], true) do
let & + & U{¢'.¢""}
else if m; matches if m’ then m’’ else m’”’ then
let class”, " = IndivisibleKeys(m'/, [], false)
let class’”, @' = IndivisibleKeys(m'”’, ¢, false)
class = max(class, class’, class’”’)
D~ dUDUD
if returnAdjustedPathset A (class € {F, A}) then
® — {6}

Theorem 1. The output of Algorithm 3 is a complete mask and
indivisible for its input.

Proof. IndivisibleKeys mirrors the classification process out-
lined above. Each monad is split on the (associative) merge opera-
tor, and each child is tested for class. Recursion into the map and
if operators is special-cased. If the path is identified as being sub-
divisible (i.e., in class F'D), the subdivided expression is returned.
Otherwise the path currently being explored is returned. The one
exception is id.¢, which is the identity for the path currently being
explored. Consequently, no paths are modified, and an empty ¢ is
returned. For any path ¢ that is subdivisible, ¢ is never returned.

Completeness can be shown by exclusion. If ¢ is returned, the cur-
rent path is completely covered. There are five classes of expression
that can produce a value other than ¢: Assignment, id.¢, map, and
if, or a merge of any of the above. if statements are handled by triv-
ial recursion. map produces a wildcard key for all of its children,
and thus trivially covers the entire input.

Thus, the only non-trivial case is that of Assignments and id.¢
combined recursively with merge and is if. Assignment operators
modify at most a single key via the merge operation, and that
key (or its subdivisible descendents) is guaranteed to be returned
by recursion. id.¢ is the identity for ¢, and modifies nothing.
Consequently, the algorithm produces a complete mask. O

Now that we have a fine-grained set of paths containing the frag-
ments its input that a Barg, monad affects, we can compute the
details of these effects. We use a simple form of delta computation
(a.k.a., program slicing) to identify the computation that produces
the new value at a given path. This process is identical to that of
Algorithm 1.

Theorem 2. Given a Barg monad m, and the set of point-updates
U defined as below, U encodes m.

U = {{¢,[:=], Subscript(m, ¢)) | ¢ € IndivisibleKeys(m)}

2013/8/20

Proof. By Theorem 1 IndivisibleKeys(m) is a complete mask
for m. By Lemma 5 Subscript(m,¢$) = m.¢, or the updated
value at path ¢. Evaluating everymonad so generated in parallel
provides new values for every path ¢ in the complete mask. By
Definition 17, paths not in a complete mask of m are not modified
by m. Consequently, every path is either updated by a point update
in U or not modified by m. g
Finally, we extract incrementality out of a given monad using
Algorithm 4. This process identifies a combiner function that can
be used to further generalize the point update. We consider the
following three additional combiner functions:

[<:‘+:‘X:]('Uorig,vupd) > Vorig [<: | + |><} Vupd

Algorithm 4 Incrementalize

Require: m, a Barg, monad.
Require: ¢, a path.
Ensure: f, a combiner function.
Ensure: Am, a Barg monad such that m = Az. f(z.¢, Am(z)).
if m matches id.¢ < m’ then
let Am + m/
let f «+ [<]
else if m matches (m;cf:)0(id.¢)0(myign:) and 0 € {+, X} then
let Am + (mleft) 6 (mm-ght)
let f <+ [6=]

6. Log Compaction Revisited

Armed with a suitable monad language, we now return to our log
compaction example. We begin at the end, with the subsumption
and pairwise commutativity properties. The fine-grained detail of
each update exposed by incremental Barg, is ideal for this pur-
pose. We analyze each property, first in the context of individual
point updates, and subsequently in the context of sets of point up-
dates. We begin with a simple property of paths and read sets.

Definition 18. Two paths ¢ and ¢' are defined as ancestor-
exclusive if ¢ # ¢’ and neither ¢ nor ¢’ is an ancestor (prefix) of
the other.

Definition 19. A monad m is called read-independent of a path
@ if every path in the read-set p(m) is ancestor-exclusive with ¢. A
point update u is read-independent of ¢ if its equivalent monad is
read-independent.

Subsumption. We start with the subsumption property. Recall
that this property is defined over two monads m, m’ where m’
subsumes m when m o m’ = m/.

Lemma 6. Consider two indivisible point updates u = (¢, f, m)
and u' = (¢', f',m’) where ¢ = ¢' or one of its ancestors. The
equivalent monad of u' subsumes that of u if and only if (1) m’ is
read-independent of ¢ and f'is:=, or (2) u is the identity (i.e., u is
o+=0, px=1, p<=0, etc...).

Proof. Subsumption of an identity operation is trivially guaranteed.

To re-cap, the replacement combiner is [:=](Vorig, Vupd) — Vupd-
The output of this function is independent of its first input, guar-
anteeing that any replacement update subsumes all prior updates
to the same path or one of its ancestors. The only other possible
dependency is in the update computation m’, which is asserted to
be read-independent of ¢. The converse can be shown trivially for
the numerical combiners, as the output of each is guaranteed to be
linearly or multiplicatively correlated with the input.

For the merge combiner (<), by indivisibility, the set of keys
created or deleted by w is determined by its input. Consequently,
it is always possible to identify some input to u that produces an
output that will not be altered by u’, and subsumption does not
hold. m|

Theorem 3. Consider two sets of individisible point updates U
and U’ that encode Baro, monads m and m' respectively. m’
subsumes m if every point update in U is subsumed by a point
update in U’ and if every point update in U is read-independent of
every target path in U.

Proof. If every effect (i.e., point update) of U is subsumed by an
operation in U’, the only other possible way for m to influence
the output of m’ is via one of the update computations. Read-
independence guarantees that this is not possible. O

Commutativity. The other property of interest is pairwise com-
mutativity over functional composition.

Lemma 7. Consider any two indivisible point updates v =
(p, f,m) and v’ = (@', f',m'). The equivalent monads of u and
u' commute if m and m’ are read-independent of ¢’ and ¢ respec-
tively, and either (1) ¢ and ¢ are ancestor-exclusive, or (2) ¢ = ¢’
and f and f' commute.

Proof. Read independence guarantees that m’(id) = m/(id o u)
and visa versa. That is, the update value computed for each point
update is identical, regardless of which point update is applied first.

If ¢ and ¢ are ancestor-exclusive, then the effects of both updates
are disjoint. If the update values are also order-independent, u’ o
U=uo u'.

If ¢ = ¢, then precisely the same value is being modified. The
resulting structure can be rewritten as

F'(f(id, m(id)), m’(id o w)) = f'(f(id, m(id)),m'(id))
If f and f' commute, then
= f(f'(id,m(id)), m(id)) = f(f'(id, m’(id)), m(id o))
And by read independence, we have commutativity. O

Theorem 4. Consider two sets of indivisible point updates U and
U’ that encode Baror monads m and m' respectively. m and m’
commute if and only if every point update in U commutes with every
point update U

Proof. By Definition 15 U and m (resp. U’ and m') are semanti-
cally equivalent. If the components of m can be commuted indi-
vidually across m/’, then m can be safely decomposed, commuted,
and reconstructed on the other side. Conversely, if there is at least
one point update that can not be commuted, then the correspond-
ing path in the output of m or m’ will change depending on their
relative order. O

6.1 Log Patterns

We now turn our attention to recoverability and the two log trans-
forms of interest. Concretely, we will demonstrate that by exposing
the semantic properties of individual log entries, the necessary con-
ditions for recoverability of both deletion and composition trans-
forms can be expressed in terms of simple graph patterns over the
log, or log queries that can be efficiently evaluated incrementally.

Information obtained through program analysis is encoded in a
simple graph structure G0y = (V, E) with labeled edges, defined

2013/8/20

as follows. V' include one vertex for every monad m in the log, one
vertex for point update u in the encoding of each m, one vertex
for every type of combiner function f, and one vertex for every
possible path ¢. E includes labeled edges as follows:

e (m,prev,m’), (m,next, m’) for all adjacent log entries.

e (m, composedOf, u) for every point update m in the set of
indivisible point updates that encodes m.

o (u,target, ¢), (u, readsFrom, ¢) for the target path of u and
the read set p(u) respectively. relationship.

¢ (u, combiner, f) for the combiner function f of u.

We can define several useful transforms over this graph using
SPARQL, a standard graph query and manipulation language.

Composition. For any two monads m and m’, a subgraph describ-
ing m” = m om’ can be generated. We begin by generating a set
of nodes "’ for each indivisible point update in the encoding of m.
Point updates in m and m’ operating on disjoint paths are passed
through unchanged. If one update modifies a subset of the other
however, the two must be combined. Since the outermost path is,
by definition, indivisible, the merged point-update must modify the
outermost path. The following SPARQL updates produce the rele-
vant edges; the symmetry on m and m’ allows only the outermost
path to pass through.

CONSTRUCT { m’’ composedOf u’’. u’’ basedOn 7u. }
WHERE { m composed0f ?7u. 7u target 7phi.

NOT EXISTS { m’ composed0f 7u’.

?7u’ target 7phi’. prefix0f(?phi, ?phi’) }.}
CONSTRUCT { ... as above, swapping m and m’ ... }

All that remains is to create the target and readsets for each u”’. The
target is defined as the outermost path, and the readset is defined by
the union of the two readsets, less any values overwritten by m’.

CONSTRUCT { u’’ target 7phi. }
WHERE { u’’ basedOn ?7u; target 7phi.
u’’ basedOn 7u’; target 7phi’.
prefix0f (?phi, ?phi’) }
CONSTRUCT { u’’ readsFrom 7phi. }
WHERE { u’’ basedOn ?7u; readsFrom 7phi.
((m’ composed0f 7u) OR
NOT EXISTS { m’ composed0f ?7u’; target ?7phi’
prefix0f(?phi’, ?7phi) }) }

Subsumption. The necessary conditions (Lemma 6) for subsump-
tion S(m,m’) can be phrased as a condition in SPARQL. Every
path modified by m must be overwritten by m/, and and m’ may
not read from an affected path.

NOT EXISTS {
m composed0f 7u; target 7phi.
(NOT EXISTS { m’ composedOf 7u; target 7phi’.
prefix0f (?phi, ?phi’) }
OR (m’ composed0f 7u; readsFrom 7phi’.
NOT ancestorExclusive(?phi, 7phi’))) }

Commutativity. The necessary conditions (Lemma 7) for pairwise
commutativity C(m,m’) can phrased as a condition in SPARQL.
The read set of m may not intersect with the targets of m’ and
visa versa. Similarly, their respective point update targets must be
ancestor exclusive, unless the targets are identical and the combiner
functions are commutative.

NOT EXISTS { m composedOf 7u; target 7phi

m’ composed0f ?u’; readsFrom ?7phi’ }.
NOT EXISTS { m composed0f 7u; readsFrom ?phi

m’ composed0f 7u’; target 7phi’ }.
NOT EXISTS { m composed0f 7u; target 7phi

m’ composedOf ?u’; target ?phi’

(NOT ancestorExclusive(?phi,?phi’)

OR (7u combiner 7f. 7u’ combiner 7f’.

?f commutesWith ?7f’)) }

Recoverability. The necessary conditions for recoverability of
deletion and composition transforms (Lemmas 4 and 2) can both
be expressed in terms of commutativity and subsumption tests over
compositions of monads. The above graph-query-based tests, and
the definition of a graph view for composed monads, are thus suffi-
cient to assert recoverability of a deletion or composition transform.

Specifying these properties declaratively allows a typical graph
database system to use an assortment of indexing, query optimiza-
tion, and incremental evaluation strategies to evaluate these prop-
erties efficiently. Such optimizations are future work.

7. Related Work

There has been much work focused on the formalization of query
languages and database models for complex data [3, 4, 29]. Much
of this work is based on monad algebra, Lawvere theories, and
universal algebra [5, 8, 25, 26]. Manes et al. [30] showed how to
implement collection classes using monads. Cluet [20] is an algebra
based query language for an object-oriented database system. Our
work is based on the same fundamental theories. In the following
we compare our work to previous results.

Languages for Transforming Hierarchical Data. There has been
considerable work [1-3, 15] on the transformation of hierarchical
data. Two approaches have become dominant in this area: Nested
Relational Calculus [34] and the Monad Algebra [28]. Our own
approach is closely based on the latter, adapted for use with labeled
sets, and with the intentional exclusion of the superlinear time
complexity pairwith operator (or equivalently, the cartesian cross-
product).

Semistructured Data. Also closely related is work on manag-
ing semistructured data [14]. The vast majority of recent efforts
in this area have been on querying and transforming XML data.
One formalization by Koch [27] is also closely based on Monad
Algebra. Work by Cheney follows a similar vein, in particular
(FLUX [18, 19], a functional language for XML updates. In [9],
Benedikt and Cheney present a formalism for synthesizing the out-
put schema of XML transformations, similar to our notion of the
compositional compatibility of mutations. More recently, there has
also been interest in querying lighter-weight semistructured data
representations like JSON[11, 12].

Algebraic Properties of State Updates. The distributed systems
community has identified a number of algebraic properties of state
mutations that are useful in distributed concurrency control. Com-
mutativity of updates has been explored extensively [35, 37], but
the typical assumption is that a domain-specific commutativity or-
acle is available, such as for edits to textual data [31, 35]. Our no-
tion of subsumption is quite similar to the Badrinath and Ramam-
ritham [7]’s recoverability property. Unlike subsumption, this prop-
erty is defined in terms of observable side-effects rather than state,
but is otherwise identical. Like prior work on commutativity, they
assume that a domain-specific oracle has been provided. Several
efforts have been made to understand domain-specific reconcilia-
tion strategies. Feldman er al.’s Operational Transforms [24] are

2013/8/20

analogous to our our mutation languages, but assume that domain-
specific operations analogous to our merge operation are available.
Perhaps the closest effort to our own has been Preguica et al.’s Ice-
Cube [33], and Edwards et al.’s Bayou [21], each of which exploit a
range of specific algebraic properties of updates to distributed state.
However, both systems must be explicitly adapted to specific ap-
plication domains by the construction of domain-specific property
oracles, or by mapping the application’s behavior down to a trivial
update language. To the best of our knowledge, none of these ar-
eas have been explored in the context of a non-trivial state update
language.

Update Sequencing. The use of distributed logs and publish/sub-
scribe to apply a canonical order to updates has also been explored
extensively by the distributed systems and database communities.
Ellis et al. noted the relevance of sequencing to distributed con-
currency control [22]. Eugster er al. identified the usefulness of
sequencing updates to distributed collection types [23]. Domain
specific applications of similar ideas can be found in work by Os-
trowski and Birman [32], Weatherspoon et al. [36], and others.

Intent-Based Updates. The use of intent-based (i.e., operational)
updates appears frequently in database literature, especially in the
context of distributed databases, where it is used to reduce commu-
nication overhead. Two concrete examples are Ceri and Widom’s
Starburst [16], and Chang et al.’s BigTable [17].

8. Conclusion

We have introduced a formal framework for reasoning about prop-
erties over monadic logs, a functional representation of shared state
in collaborative web-applications. A theory of log transformation
has been presented, showing preservation of safety properties like
tail-correctness and recoverability. Overall properties on the log it-
self can be expressed declaratively through SPARQL queries, lever-
aging the structure of the log itself to assert those properties.

References

[1] S. Abiteboul and N. Bidoit. Non first normal form relations: An
algebra allowing data restructuring. JCSS, 33(3):361-393, 1986.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The
Lorel query language for semistructured data. JODL, 1(1):68-88,
1997.

[3] Serge Abiteboul and Catriel Beeri. The power of languages for the
manipulation of complex values. VLDBJ, 4(4):727-794, October
1995.

[4] Serge Abiteboul and Richard Hull. IFO: a formal semantic database
model. ACM TODS, 12(4):525-565, November 1987.

[5] Jifi Adamek, Mahdieh Haddadi, and Stefan Milius. From corecursive
algebras to corecursive monads. In CALCO, pages 55-69, 2011.

[6] Sumit Agarwal, Daniel Bellinger, Oliver Kennedy, Ankur Upadhyay,
and Lukasz Ziarek. Monadic logs for collaborative web applications.
In WebDB, 2013.

[7]1 B R Badrinath and Krithi Ramamritham. Performance evaluation of
semantics-based multilevel concurrency control protocols. In SIG-
MOD, May 1990.

[8] Adriana Balan and Alexander Kurz. On coalgebras over algebras.
Electron. Notes Theor. Comput. Sci., 264(2):47-62, August 2010.

[9] M. Benedikt and J. Cheney. Semantics, types and effects for xml
updates. DBPL, pages 1-17, 2009.

[10] Phillip A Bernstein, CW Reid, and Sudipto Das. Hyder—A Transac-
tional Record Manager for Shared Flash. CIDR, 2011.
[11] K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.C.

Kanne, F. Ozcan, and E.J. Shekita. Jaql: A scripting language for large
scale semistructured data analysis. PVLDB, 4(12), 2011.

[12] K. Beyer, V. Ercegovac, J. Rao, and E. Shekita. Jaql: A json query
language. URL: http://jaql. org, 2009.

[13] Kenneth Birman and Robert Cooper. The isis project: Real experience
with a fault tolerant programming system. In Proceedings of the 4th
workshop on ACM SIGOPS European workshop, pages 1-5. ACM,
1990.

[14] P. Buneman. Semistructured data. In PODS, pages 117-121, 1997.

[15] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of pro-
gramming with complex objects and collection types. Theoretical
Computer Science, 149(1):3—48, 1995.

[16] Stefano Ceri and Jennifer Widom. Production rules in parallel and
distributed database environments. PVLDB, 1992.

[17] FE. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R.E. Gruber. Bigtable: A distributed
storage system for structured data. ACM TOCS, 26(2):4, 2008.

[18] J. Cheney. Lux: A lightweight, statically typed xml update language.
SIGPLAN, 1060:25-36, 2007.

[19] J. Cheney. Flux: functional updates for xml. ACM SIGPLAN Notices,
43(9):3-14, 2008.
[20] S. Cluet, C. Delobel, C. Lécluse, and P. Richard. Reloop, an algebra

based query language for an object-oriented database system. Data
Knowl. Eng., 5(4):333-352, October 1990.

[21] W Keith Edwards, Elizabeth D Mynatt, and Karin Petersen. Design-
ing and implementing asynchronous collaborative applications with
Bayou. In UIST, 1997.

[22] C A Ellis and S J Gibbs. Concurrency control in groupware systems.
SIGMOD, 1989.

[23] Patrick Th Eugster and Rachid Guerraoui. Distributed asynchronous
collections: Abstractions for publish/subscribe interaction. ECOOP,
2000.

[24] Ariel J Feldman, William P Zeller, Michael J Freedman, and Ed-
ward W Felten. SPORC: Group Collaboration using Untrusted Cloud
Resources. In OSDI, 2010.

[25] Martin Hyland and John Power. The category theoretic understanding
of universal algebra: Lawvere theories and monads. Electron. Notes
Theor. Comput. Sci., 172:437-458, April 2007.

[26] G. Jaeschke and H. J. Schek. Remarks on the algebra of non first
normal form relations. In PODS, pages 124—138, 1982.

[27] Christoph Koch. On the complexity of nonrecursive XQuery and func-
tional query languages on complex values. ACM TODS, 31(4):1215—
1256, December 2006.

[28] K. Lellahi and V. Tannen. A calculus for collections and aggregates.
In Category Theory and Computer Science, pages 261-280. Springer,
1997.

[29] Zoran Majkic and Bhanu Prasad. Kleisli category and database map-
pings. IJIIDS, 4(5):509-527, October 2010.

[30] Ernie G. Manes. Implementing collection classes with monads. Math-
ematical. Structures in Comp. Sci., 8(3):231-276, June 1998.

[31] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data
Consistency for P2P Collaborative Editing. In CSCW, page 259, 2006.

[32] Krzysztof Ostrowski and Ken Birman. Storing and accessing live
mashup content in the cloud. SIGOPS Review, 44(2), April 2010.

[33] Nuno Preguica, Marc Shapiro, and Caroline Matheson. Semantics-
based reconciliation for collaborative and mobile environments. On
The Move to Meaningful Internet ..., 2003.

[34] M.A. Roth, H.F. Korth, and A. Silberschatz. Extended algebra and
calculus for nested relational databases. ACM TODS, 13(4):389-417,
1988.

[35] Marc Shapiro and Nuno Preguica. Designing a commutative replicated
data type. Technical report, CORR, October 2007.

[36] Hakim Weatherspoon, Patrick Eaton, Byung-Gon Chun, and John Ku-
biatowicz. Antiquity: exploiting a secure log for wide-area distributed
storage. In EuroSys, 2007.

[37] William E Weihl. Commutativity-based concurrency control for ab-
stract data types. IEEE TC, 37(12):1488-1505, 1988.

2013/8/20

