
Abstract—In this paper, we study the tradeoff between two 
important traffic engineering objectives: load balance and energy 
efficiency. Although traditional commonly used multi-objective 
optimization methods can yield a Pareto efficient solution, they need 
to construct an aggregate objective function (AOF) or model one of 
the two objectives as a constraint in the optimization problem 
formulation. As a result, it is difficult to achieve a fair tradeoff 
between the both objectives. Accordingly, we induce a Nash 
bargaining framework which treats the two objectives as two virtual 
players in a game theoretic model, who negotiate how traffic should 
be routed in order to optimize both objectives. During the 
negotiation, each of them announces its performance threat value to 
reduce its cost, so the model is regarded as a threat value game. Our 
analysis shows that no agreement can be achieved if each player sets 
its threat value selfishly. To avoid such a negotiation break-down, we 
modify the threat value game to have a repeated process and design 
a mechanism to not only guarantee an agreement, but also generate 
a fair solution. In addition, the insights from this work are also 
useful for achieving a fair tradeoff in other multi-objective 
optimization problems. 
 

Index Terms—Traffic Engineering; Load Balance; Energy 
Efficiency; Nash Bargaining; Multi-Objective Optimization. 

I. INTRODUCTION 

Many objectives exist in network traffic engineering [1-7], 
such as minimizing E2E (end to end) delay or hop count, 
maximizing throughput, balancing link load, and reducing total 
energy consumption. Most of these objectives are conflicting with 
each other, in that improving one objective hurts the other. How 
to achieve a tradeoff between such conflicting objectives is an 
interesting problem in network traffic engineering. In this paper, 
we focus on achieving a fair tradeoff between two important 
traffic engineering objectives: load balance and energy efficiency. 

Load balance is a classic objective in traffic engineering [1-4]. 
The main goal of load balance is to enhance the performance of 
network traffic while utilizing network resource economically. To 
achieve load balance, traffic should be distributed among all the 
links uniformly, so as to reduce the carried traffic on each link. It 
could improve the performance of network traffic, in terms of 
reduced queueing delay, and enhanced network scalability.   

Energy efficiency is a relatively new but increasingly important 
traffic engineering objective [5-7], whose goal is to save energy 
consumption even though it might result in unbalanced traffic. 
More specifically, there are two commonly used models to 
determine the network energy consumption. One is the powering 
down model, and the other is the speed scaling energy model. In 
the powering down model [6], we should use as a few links to 

route the traffic as possible, so that the corresponding network 
elements can be turned off to save energy consumption. 
Obviously, this objective contradicts to that of load balance which 
is to distribute traffic to as many links as possible. Even in the 
speed scaling energy model [5, 7], where the energy consumption 
of each link is characterized by its energy curve, the traffic 
distribution achieving the highest energy efficiency would hardly 
be the same as that achieving load balance. The energy curve is a 
non-decreasing function of traffic load on each link. It could be 
convex or concave depending on its physical architecture. But it is 
unlike to be the same as congestion cost of each link. 

Since carriers/operators are interested in both objectives above 
instead of only one of them, how to optimally route traffic 
becomes a multi-objective optimization problem. 

There are two commonly used traditional methods to solve the 
optimization problem with multiple objectives [9]. One is to treat 
all objectives except the most favorite one as constraints, and then 
optimize the favorite one. Such a method might work when there 
were specific performance goals considered desirable for all the 
other objectives, in the form of the threshold values used to set the 
corresponding constraints in the optimization problem 
formulation. However, this is often not the case as there is usually 
no hard limit on the performance of these objectives. For example, 
a carrier does not know (nor wants to set) the desired specific 
performance of load balance (or energy efficiency). As a result, 
most likely some ad hoc performance thresholds will be specified 
in the corresponding constraints, and accordingly, only the 
favorite objective will achieve the best performance at the 
expense of all the other objectives. If all the objectives need to be 
pursued without restricting any to its ad hoc performance 
threshold, such a method is not suitable. 

The other traditional method is to construct an aggregate 
objective function (AOF), such as the well-known weighted linear 
sum of the objectives. It will yield a Pareto optimal solution in 
theory, but it is difficult to determine the appropriate weight for 
each objective. This is because these objective values have not 
only different performance metrics representing different 
dimensions of interest (e.g., load balance and energy efficiency), 
but also have different scales or orders of magnitude. Note that 
Langarian relaxation has similar limitations in that it may be 
difficult to determine the appropriate ad hoc performance 
thresholds for different objectives. 

 Ideally, when we pursue multiple objectives in traffic 
engineering, we do not want to discriminate against any objective 
by improving the performance of some objectives more 
significantly than that of the others due to ad hoc constraints or 
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weights assigned for various objectives. In other words, we aim to 
achieve a fair tradeoff among the objectives we are pursuing 
under a rational guideline. For instance, from the viewpoint of 
achieving fairness between multiple objectives, the ones with a 
relatively larger optimization space should obtain more 
performance improvement than the ones with a relatively smaller 
optimization space.   

Unfortunately, the traditional multi-objective optimization 
methods cannot guarantee the fair tradeoffs among different 
objectives. In the first method mentioned above, all the objectives 
treated as constraints in the optimization problem are in a weaker 
position while the one treated as the optimization objective is in a 
stronger position, resulting in unfair tradeoffs. In the second 
method mentioned above, the objectives whose values have 
higher orders of magnitude are likely to be in a stronger position 
than the objectives that are of lower order of magnitude.  

To overcome the difficulty in achieving a fair tradeoff among 
multiple objectives in traffic engineering, e.g., load balance and 
energy efficiency, we propose a framework based on Nash 
bargaining to jointly optimize both objectives and guarantee the 
fairness between them. We treat the objectives of load balance 
and energy efficiency as two virtual game players who are 
negotiating the solution of traffic engineering. In this framework, 
we assume that each player changes its threat value (performance 
threshold) to improve its performance. Accordingly, the 
interaction of each player can be modeled as a threat value game. 
Our analysis shows that 1) there are an infinite number of Pareto 
efficient Nash equilibriums in this threat value game, and 2) a 
player can improve its performance by unilaterally reducing its 
threat value. This means that if we were to model this problem as 
a static game, both players would announce the threat value as 
low as possible to improve its performance, which would prevent 
an agreement. To ensure an agreement, we modify the threat 
value game to be a repeated procedure where each player changes 
its threat value stepwise. Based on this repeated procedure model, 
we design a mechanism which can not only guarantee an 
agreement, but also achieve a fair tradeoff. 

The main contributions of our work can be summarized as 
follows: 
● We analyze the problem of achieving a fair tradeoff between 

multiple conflicting objectives in traffic engineering and 
provide useful insights into the general multi-objective 
optimization problems. 

● We also propose a new method to achieve a fair tradeoff 
between multiple conflicting objectives in traffic engineering. 
Our method overcomes the difficulties of traditional methods 
in assigning appropriate performance thresholds to the 
objectives or determining appropriate weights in the AOF. 

The rest of the paper is organized as follows. Section II briefly 
describes the related work. Section III and Section IV present the 
commonly used models for load balance and energy efficiency, 
respectively. In Section V, we introduce the Nash bargaining 
theory which forms the foundation of our model. After that, we 
analyze the fair tradeoff problem in detail and describe the 
motivation for using Nash bargaining to solve the problem in 
Section VI. In Section VII, we propose a method to achieve a fair 
tradeoff between load balance and energy efficiency, and 
determine the initial (and subsequent) threat points which can 
induce a fair solution. We also present case studies of our method 

in Section VIII and conclude our paper in Section IX. 

II. RELATED WORK 
In the past decades, a lot of works have been done on the traffic 

engineering in networks. Some have focused on traffic load 
balance [1-4], while others have tried to minimize the energy 
consumption [5-7]. Load balance can be realized by optimizing 
the link weight in the OSPF network [2] or by configuring LSPs 
(label-switched path) in MPLS networks [10]. None of such 
works, however, considered reducing the energy consumption in 
the network. On the other hand, recent works in [5] and [11] 
pursued energy efficiency, but neither of them considered load 
balance as an objective. To the best of our knowledge, there is no 
existing work on traffic engineering that pursues both load 
balance and energy efficiency simultaneously.  

To deal with multiple objectives, the commonly used 
traditional multi-objective optimization approach [9] creates an 
AOF or treats one of the objectives as the primary objective and 
expresses all other (secondary) objectives as constraints of the 
optimization problem. Though both of these methods can yield a 
Pareto efficient solution, it is difficult to select the appropriate 
weights when constructing the AOF or to determine the 
appropriate performance threshold values to be used in the 
constraints for the secondary objectives. As a result, a fair tradeoff 
between among the objectives cannot be achieved. 

Game theory is a useful tool to solve many network 
optimization problems. There are an increasing number of 
researchers who apply it to address routing issues in multilayer 
network [12-14], cooperation (or competition) among multiple 
autonomous systems [4], and content provider selection [15]. To 
the best of our knowledge, there has been no existing work which 
has analyzed the tradeoff between multiple objectives of a single 
operator in a game theoretic perspective, let alone any work on 
achieving fair tradeoff between load balance and energy 
efficiency.  

The work which is most similar to our work is the Nash 
arbitration scheme [17]. In this scheme, an AOF having the same 
form as that in Nash bargaining was introduced to derive the 
optimization solution. But it approached the problem mostly from 
a multi-objective optimization perspective while we will 
approach it from a game theoretic perspective in this paper. In 
addition, it has been proved that the solution of Nash arbitration 
depends on the threat value of each objective and an objective that 
is the farthest away from its threat value tends to improve most 
significantly [16]. However, it neither showed how the threat 
value affects the outcome of the optimization, nor how to set the 
threat values. 

III. LOAD BALANCE MODEL 
In this section, we describe the network model and formulate 

the standard load balance optimization problem. 
Consider a network represented by a directed graph G=(V, E), 

where V denotes the set of nodes and E denotes the set of directed 
physical links. Let Pij={pk

ij} denote the set of all the paths from i 
to j, where pk

ij denote the kth path from i to j and i, j ∈V. A link l 
on the kth path from i to j will be referred to as l∈pk

ij .We also use 
xk

ij to denote the rate of flow on the kth path from i to j, xl the rate of 
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flow on link l∈E, and dij the demand from i to j. The capacity of 
link l∈E is cl>0. 

The goal of load balance is to enhance the network 
performance by reducing congestion and improving scalability.  
In practice, network operators control routing either by changing 
OSPF link weights [2] or by establishing MPLS label-switched 
paths [10]. The latter one is assumed in our model. It is not only 
because it is optimal, i.e. it gives the routing with minimum 
congestion cost, but also due to the fact that it can be realized 
easily by routing protocols that use MPLS tunneling. 

Based on the above discussion, the traffic engineering for load 
balance can be formulated as follows: 
minimize              ( )l l

l

f x∑                                                        (1) 

subject to         
, : :

,
k
ij

k
l ij

i j i j k l p

x x l E
≠ ∈

= ∀ ∈∑ ∑  

       l lx c l E≤ ∀ ∈  
       ,k

ij ij
k

x d i j i= ∀ ≠∑  

where fl(·) represents the congestion cost of link l∈E. In this 
paper, we assume that fl( · ) is a convex, continuous and 
non-decreasing function of xl. Using such a cost function in the 
optimization objective will penalize high link utilization and 
balance the load in the networks. More specifically, a queueing 
theory style congestion cost function such as fl(xl)=xl/(cl-xl) is 
usually adopted for this purpose, as it has the desired properties of 
being convex, continuous and non-decreasing with xl. In addition, 
by using this congestion cost function, the link that had higher 
load (or utilization) will have a higher cost than the links with a 
lower load, so that traffic will be distributed uniformly in the 
network in the optimal solution.  

IV. ENERGY EFFICIENCY MODEL 
While the load balance problem usually assumes that the 

congestion cost function of each link is a convex, continuous and 
non-decreasing function of the amount of traffic carried by the 
link, there are two popular models that relate power consumption 
to traffic load: speed scaling and powering down. In the former 
model, the processing (or transmission) speed of a network 
element is adjusted (and accordingly, the corresponding energy 
consumption also varies) according to the carried traffic load. In 
the latter model, one tries to turn down any elements carrying no 
traffic load at all to save energy. 

We focus on the speed scaling model in this paper because it is 
more realistic. In addition, the powering down model focuses on 
optimizing an individual element in isolation [5], but we want to 
examine optimization problems that arise in a network consisting 
of multiple network elements. In particular, we assume that the 
energy consumption in the network can all be represented in terms 
of the energy consumption of the links, which can be 
characterized by energy curve gl(xl). The goal of traffic 
engineering to achieve energy efficiency is thus to minimize the 
total energy cost of all the links in the network. Accordingly, the 
optimization problem can be formulated as follows: 
minimize                ( )l l

l
g x∑                                                     (2) 

subject to         
, : :

,
k
ij

k
l ij

i j i j k l p

x x l E
≠ ∈

= ∀ ∈∑ ∑  

       l lx c l E≤ ∀ ∈  
       ,k

ij ij
k

x d i j i= ∀ ≠∑  

Note that, the energy curve is often modeled by a polynomial 
function gl(xl)= μlxl

α, where μl and α are device specific 
parameters. For example, the value of the α is 1.11, 1.66, and 1.62 
for Intel PXA 270, a TCP offload engine, and Pentium M 770, 
respectively [8]. Accordingly, we will set α to be 1.5 in the case 
studies of the paper. 

V. NASH BARGAINING 
Since our method is based on the Nash bargaining solution [17] 

to derive a tradeoff between load balance and energy efficiency, 
we briefly introduce the Nash bargaining solution and analyze its 
properties in this section. 

Consider two players, labeled i=1, 2, that are trying to achieve 
an agreement over a strategy space Χ. And the utility function ui 
of each player i is defined over the space X ∪{T}, where T is the 
strategy of the two players that leads to a failed agreement. Define 
the space S to be the set of all possible utilities that the two players 
can achieve, i.e. , 

1 2 1 2{( ( ), ( )) | ( , ) }S u x u x x x x X= = ∈  
Let d=(u1(t1,t2), u2(t1,t2))=(d1, d2) be the pair of utility expected to 
be obtained by the two players when they fail to achieve an 
agreement , i.e. the disagreement point or threat point. We also 
say d1 and d2 are the threat values of play 1 and player 2, 
respectively. The threat value can also be comprehended as the 
minimal utility a player expected to obtain in the agreement. 

A bargaining problem is defined as the pair (S, d) where 
2S R⊂  and d∈S such that  

● S is a convex and compact set 
● There is some s∈S  such that s>d, by which we mean si≥di for 

i=1,2 and si>di for i=1 or 2. 
 The Nash bargaining solution we are interested in is a mapping 
f: (S, d)→S for every bargaining problem (S, d) (note that fi(S,d) is 
used to represent the utility value of player i) which satisfies the 
following four properties: 
1. Pareto efficiency:  A bargaining solution f(S,d) is 

Pareto-efficient means that there is no point (s1, s2) ∈S  such 
that si≥fi(S,d) for all i  and si> fi(S,d) for some i. 

2. Symmetry: If (S, d) is symmetric around s1=s2, i.e. (s1, s2) ∈S 
iff (s2, s1) ∈S and d1= d2, then f1(S,d)= f2(S,d). 

3. Invariance to equivalent utility representation: Assume the 
solution of Nash bargaining (S, d) is (s1, s2), if it is 
transformed to (S’, d’) by taking si’=αisi+βi and di’=αidi+βi, 
where αi>0, the solution of (S’, d’) is (α1s1+β1, α2s2+β2). 

4. Independence of irrelevant alternatives:  Given two 
bargaining problem (S, d) and (S’, d), where 'S S⊂ , if f(S,d) 
∈S’, there must be f(S,d)= f(S’,d). 

Nash’s result [16] shows that there is a unique bargaining 
solution that satisfies the four properties, which is the solution of 
the following optimization problem: 
maximize             1 1 2 2( )( )s d s d− −                                              (3) 
subject to    1 2( , )s s S∈  
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       1 2 1 2( , ) ( , )s s d d≥  
 If the utility function of each player is defined to be the 
opposite number of its cost function, the tradeoff problem can be 
modeled as the following Nash bargaining form: 
maximize          ( ( ))( ( ))LB l l EE l l

l E l E
d f x d g x

∈ ∈

− −∑ ∑                   (4) 

subject to    
, : :

,
k
ij

k
l ij

i j i j k l p

x x l E
≠ ∈

= ∀ ∈∑ ∑  

       l lx c l E≤ ∀ ∈  
       ,k

ij ij
k

x d i j i= ∀ ≠∑  

      ( )l l LB
l E

f x d
∈

≤∑  

( )l l EE
l E

g x d
∈

≤∑  

where dLB and dEE are the performance thresholds (maximal cost 
tolerated by each player) set by the load balance and energy 
efficiency objectives, respectively. It should be noted that these 
performance thresholds correspond to the worst-case 
performance which can be easily determined. However, they 
cannot be used by the conventional multi-optimization approach 
whereby different performance thresholds corresponding to 
desirable performance are needed for the constraints, not the 
worst-case possible performance, which is too loose as a 
performance bound. 

VI. PROBLEM ANALYSIS 
In this section, we will analyze the desirable properties of the 

solution obtained by our method and explain why the Nash 
bargaining framework is suitable to our problem. For each of the 
optimization problems in (1) and (2), xl in the objective function 
can be substituted based on the first equation (constraint), so fl(·) 
and  gl(·) can be treated as a function of x={xk

 ij}. From now on, we 
also use fl(x) and  gl(x) to denote the cost function of load balance 
and energy efficiency for link l. 

A. Desirable Properties 
a. Pareto efficiency: In our problem, the two objectives (load 

balance and energy efficiency) are pursued by one operator, 
so that the solution x* should not be worse than any solution x 
for both objectives, i.e. there exist no feasible solution x such 
that *( ) ( )l l

l E l E

f x f x
∈ ∈

<∑ ∑ and *( ) ( )l l
l E l E

g x g x
∈ ∈

<∑ ∑ . It also 

means that the solution of our method should lie on the Pareto 
frontier (See Definition 6) and hence no other solution can 
improve at least one player’s performance without hurting 
the performance of the other one.  

b. Fairness: Load balance and energy efficiency are both 
pursued and any one of them are not preferred more than the 
other one, so that we should treat them equitably. The 
fairness is defined as follows: 

Definition 1: Let xLB and xEE be the solutions to the 
optimization problems (1) and (2) respectively, then we define the 
best case and worst case load balance cost to be 

( )best l LB
l E

LB f x
∈

= ∑  and ( )worst l EE
l E

LB f x
∈

= ∑  

respectively. Similarly, we define the best case and worst case 
costs of energy efficiency to be 

( )best l EE
l E

EE g x
∈

= ∑  and ( )worst l LB
l E

EE g x
∈

= ∑  

respectively. 
Definition 2 (Proportional Fairness): Assume that sLB and sEE 

are the objective values of load balance and energy efficiency 
corresponding to a solution that achieves some tradeoffs between 
the two, then the solution is proportionally fair if and only if it 
satisfies the following equation: 

worst LB worst EE

worst best worst best

LB s EE s
LB LB EE EE

− −
=

− −
. 

Definition 2 means that in the solution with a fair tradeoff, both 
the load balance and energy efficiency objectives obtain the same 
percentage (or relative) improvement. It is worth noting that 
although the values of the two utility functions may have 
significantly different orders of magnitude, and/or their 
optimization spaces have different sizes, the above definition of a 
fair tradeoff uses a relative term and as a result, each objective 
function will result in a proportional improvement over its worst 
case performance. 

Definition 3 (Max-Min Fairness): Assume that sLB and sEE are 
the objective values of load balance and energy efficiency 
corresponding to a solution that achieves some tradeoffs between 
the two, then, the solution is Max-Min fair iff  

1 2

1 2

( , )
( , ) arg max min{ , }worst worst

LB EE s s S
worst best worst best

LB s EE s
s s

LB LB EE EE∈

− −
=

− −
. 

In other words, a Max-Min fair solution maximizes the relative 
performance improvement of the objective who gets less relative 
performance improvement, and accordingly, tries to minimize the 
performance gap between the two objective functions (in terms of 
their relative performance improvement).   

Theorem 1: For a Pareto efficient solution (sLB, sEE), if this 
solution is proportional fair, it must also be max-min fair. 
Proof: 
 We prove it by contradiction by assuming that a Pareto efficient 
solution (sLB, sEE) is proportional fair but not max-min fair.  

Let another Pareto solution (s’LB, s’EE)≠ (sLB, sEE) be max-min 
fair solution such that 

' '

min{ , }

min{ , }

worst LB worst EE

worst best worst best

worst LB worst EE

worst best worst best

worst LB worst EE

worst best worst best

LB s EE s
LB LB EE EE
LB s EE s

LB LB EE EE
LB s EE s

LB LB EE EE

− −
>

− −

− −
=

− −

− −
=

− −

, 

the following inequations must be satisfied 
'

worst LB worst LB

worst best worst best

LB s LB s
LB LB LB LB

− −
>

− −
 

and 
'

worst EE worst EE

worst best worst best

EE s EE s
EE EE EE EE

− −
>

− −
. 

These two inqualities imply that (sLB, sEE) is not a Pareto 
efficiency solution, which is a contradiction.                                 ■ 
 Theorem 1 means that we can focus on finding a tradeoff 
solution which is Pareto efficient and satisfies the proportional 
fairness property hereafter. 
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B. Why Nash Bargaining 
The key idea of our work is to find a utility allocation method 

such that the fairness between multiple objectives can be 
guaranteed. We adopt the Nash bargaining framework because it 
not only is a classical cooperative game framework which pursues 
the fairness between the players in the game, but also will obtain a 
Pareto efficient solution. Since a solution using Nash bargaining 
is determined by the threat points which can be treated as the 
performance thresholds of each player, a key issue is to determine 
the threat point of a Nash bargaining problem such that the 
fairness between different objectives can be guaranteed. 

VII. TRADING OFF LOAD BALANCE AGAINST ENERGY 
EFFICIENCY USING NASH BARGAINING 

In this section, we realize the tradeoff between load balance 
and energy efficiency based on Nash bargaining framework. In 
such a framework, each player announces its threat value to 
improve its own performance, so that we call it threat value game. 
In Subsection VII.A, we introduce this game and analyze it in 
depth. Our analysis shows that such game has an infinite number 
of Nash equilibriums and when each player selfishly determines 
threat value, it will prevent the agreement. To achieve the 
agreement, we modify the threat value game to be a repeated 
process and design a mechanism to guarantee the agreement in 
Subsection VII.B. Through this mechanism we can easily 
determine the initial threat point (and all subsequent threat points) 
which can result in fair solution. Since the optimization problem 
(5) is not in a convex form, we will show how to translate it into a 
convex form which can be solved more efficiently in Subsection 
VIII.C. 

A. Nash Bargaining Model and Threat Value Game 
Let aLB and aEE be some chosen threat values of load balance 

and energy efficiency, respectively. The Nash bargaining solution 
can be derived by the following optimization problem: 
maximize         ( ( ))( ( ))LB l l EE l l

l E l E
a f x a g x

∈ ∈

− −∑ ∑                      (5) 

subject to    
, : :

,
k
ij

k
l ij

i j i j k l p

x x l E
≠ ∈

= ∀ ∈∑ ∑  

       l lx c l E≤ ∀ ∈  
       ,k

ij ij
k

x d i j i= ∀ ≠∑  

      ( )l l LB
l E

f x a
∈

≤∑  

( )l l EE
l E

g x a
∈

≤∑  

Obviously, both players can change its threat value to improve 
its own performance. But neither of them should be allowed to 
change the threat value arbitrarily, otherwise it may prevent the 
agreement (leading to no feasible solution to (5)). To analyze such 
a game in more depth, we first have the following definition. 

Definition 4:  A threat value game is a tuple G=(N, (Ai)i∈{LB,EE},  
(ci) i∈{LB,EE}), where 
● Ai is the set of available strategies for player i∈{LB,EE}. In 

our model, ALB=[LBbest, LBworst] and AEE=[EEbest, EEworst]. We 
use ai to denote a special strategy for player i. 

● ci is the cost for player i∈{LB,EE}. The value of ci  depends 
on the solution of optimization problem (5). 

The threat value can also be treated as the performance 
threshold of each player to sign the agreement. If there exist no 
feasible solution to (5) (which means no agreement can be 
achieved), ci=∞ for each player. Otherwise,  

* *( )LB l
l E

c f x
∈

= ∑  and * *( )EE l
l E

c g x
∈

= ∑  

where x* ={xk
 ij

* } is the solution of (5). 
Lemma 1: For each player in the threat value game, reducing 

its threat value unilaterally will improve its performance or 
prevent the agreement. 
Proof: 
 Without loss of generality, we assume that player energy 
efficiency reduces its threat value unilaterally, and as a result, the 
threat point is moved from (aLB, aEE) to (aLB, a’

EE), where aEE > 
a’

EE. 
If there exists no feasible solution for the threat point (aLB, a’

EE), 
the agreement will be broken, and the cost for both players is ∞. 
Otherwise, we denote the optimal solution before and after player 
energy efficiency reduces its threat value by x and x’ respectively, 
then we know: 

' '

( ( ))( ( ))

( ( ))( ( ))

LB l EE l
l E l E

LB l EE l
l E l E

a f x a g x

a f x a g x
∈ ∈

∈ ∈

− − >

− −

∑ ∑

∑ ∑
                     (6.1) 

and       

'

' ' '

( ( ))( ( ))

( ( ))( ( ))

EE

EE

LB l l
l E l E

LB l l
l E l E

a f x a g x

a f x a g x
∈ ∈

∈ ∈

− − <

− −

∑ ∑

∑ ∑
                     (6.2) 

From (6.1)/(6.2), we can see 
'

' ' '

( ) ( )

( ) ( )
EE EE

EE l EE l
l E l E

l l
l E l E

a g x a g x

a g x a g x
∈ ∈

∈ ∈

− −
>

− −

∑ ∑
∑ ∑

                     (6.3) 

(6.3) can be converted to be 
' '( )( ( ) ( )) 0EE EE l l

l E l E
a a g x g x

∈ ∈

− − >∑ ∑                 (6.4) 

Since aEE > a’
EE, we obtain 

'( ) ( )l l
l E l E

g x g x
∈ ∈

>∑ ∑                                       ■ 

Definition 5: Let S be the set of all the possible cost pairs for 
two players. We say that the cost pair (aLB, aEE)∈S is dominated 
by (a’

LB, a’
EE)∈S iff: 

● aLB≥a’
LB and aEE≥a’

EE 
● aLB>a’

LB  or  aEE>a’
EE 

Definition 6: A Pareto frontier is a subset of S, such that all the 
points in the Pareto frontier are not dominated by any points in S. 

Theorem 2: Every point (aLB, aEE) in Pareto frontier is a Nash 
equilibrium point in the threat value game. 
Proof: 
 From Lemma 1, we know that if a player increases its threat 
value unilaterally, it will increase its cost, so that it is cost 
inefficient for any player to increase its threat value unilaterally. 
On the other hand, if a player reduces its threat value, there will be 
no feasible solution, which can be proven by contradiction as 
follows: 

Without loss of generality, we assume that player energy 
efficiency reduces its threat value to a’

EE < aEE and there exists a 
feasible solution x’ to (5). From Lemma 1, we know that 



 

 

6

'( ) ( )l l
l E l E

g x g x
∈ ∈

<∑ ∑ . 

Combining with (6.1), we have 
'( ) ( )l l

l E l E
f x f x

∈ ∈

>∑ ∑                           (7.1) 

where x is the optimal solution to (5) before the player energy 
efficiency reduces its threat value. Since (aLB, aEE) is not 
dominated by any point in S,  

( )LB l
l E

a f x
∈

= ∑                                       (7.2) 

and                             ( )EE l
l E

a g x
∈

= ∑   

must be satisfied. Otherwise (aLB, aEE) will be dominated by the 
cost pair associated with the solution of (5). 
Substituting (7.2) into (7.1) leads to 

'( )l LB
l E

f x a
∈

>∑   

which contradicts to the constraint of (5).                                ■ 

B. How to derive a fair solution 
From Lemma 1, when each player pursues its performance 

selfishly, each of them wants to set its threat value to be the 
minimal value in its own strategy space. Unfortunately, the threat 
value combined with the best performance of each player will 
make the optimization problem in (5) infeasible and prevent the 
agreement achievement. In order to avoid such an undesirable 
situation, we modify the model formulated in the previous 
subsection to be a repeated Nash bargaining problem as shown in 
Fig.1. 

In this repeated Nash bargaining model, each player changes its 
threat value stepwise to optimize it performance. Let (a(k)

LB, a(k)
EE) 

denote the threat point during the kth-iteration, and x(k) be the 
optimal solution to (5) corresponding to threat point (a(k)

LB, a(k)
EE),. 

We assume that each player updates its threat value during the  
kth-iteration as a function of its current threat value (a(k)

LB for 
player LB and a(k)

EE for player EE) and the optimal solution to (5) 
(x(k)). Therefore, we have,  

( 1) ( ) ( )( , )k k k
LB LB LBa h a x+ =                         (8.1) 
( 1) ( ) ( )( , )k k k
EE EE EEa h a x+ =                        (8.2) 

 To guarantee the fairness of the solution, we first find a threat 
point to induce a fair solution as follows. 

Theorem 3:  If the cost function of both load balance and 
energy efficiency, i.e. fl(·) and gl(·) for all l∈E, are continuous, 
then the threat point of problem (5) (LBworst, EEworst) will yield a 
fair solution. 
Proof:  
 Let x*={x*l}  be the solution to (5) with (aLB, aEE)= (LBworst, 
EEworst) and we denote the cost of load balance and energy 

efficiency associating with the solution to problem (5) by sLB and 
sEE respectively. 
 Construct a new bargaining problem (S’, d’), by setting 

'
EE EEs sα β= +  and '

EE EEd dα β= + , where 

worst best

worst best

LB LB
EE EE

α
−

=
−

 and best worst worst best

worst best

LB EE LB EE
EE EE

β
−

=
−

 

then the cost of load balance and energy efficiency in (S’, d’) are 
denoted by s’LB and s’EE, respectively. 
In such a bargaining problem, we have 

' '
worst worst

EE LB=  and ' '
best best

EE LB= , 
where LB’best and LB’worst (or EE’best and EE’worst) are in the  best 
and worst case load balance (or energy efficiency) cost problem 
respectively. Due to the fact that fl(·) and gl(·) are continuous and 
non-decreasing for all l∈E, the cost function of load balance and 
energy efficiency have the same range in (S’, d’). 

If (yLB, yEE) is a feasible solution of (S’, d’), then we consider 
the following equation group 

, : :

( )

( )

,

,
k
ij

l l EE
l E

l l LB
l E

k
ij ij

k
k

l ij
i j i j k l p

f x y

g x y

x d i j i

x x l E

∈

∈

≠ ∈

⎧ =
⎪
⎪ =⎪⎪
⎨ = ∀ ≠⎪
⎪
⎪ = ∀ ∈
⎪⎩

∑

∑

∑

∑ ∑

                        (9) 

Because there are 
| | | |

1 1,

| | |{ } |
V V

k
ij

i j j i

E p
= = ≠

+∑ ∑  variables but only 

2+|E|+|V|(|V|-1) constraints in equation group (9), a solution must 
exist. It means that (yEE, yLB) is also a feasible outcome of (S’, d’). 
Hence, s’LB=s’EE must be satisfied in (S’, d’). Based on the Nash 
bargaining’s property of invariance to equivalent utility 
representation, we obtain 

best bestLB EEα β= +                                 (10.1)  

LB EEs sα β= +                                         (10.2)  

worst worstLB EEα β= +                               (10.3)  
From (10.3)-(10.2),  

( )worst LB worst EELB s EE sα− = −                     (11.1)  
Similarly, (10.3)-(10.1) can yield 

( )worst best worst bestLB LB EE EEα− = −              (11.2)  
From (11.1)/(11.2), we obtain 

worst LB worst EE

worst best worst best

LB s EE s
LB LB EE EE

− −
=

− −
                      ■ 

Theorem 3 gives an initial threat point which can yield a fair 
tradeoff between load balance and energy efficiency. Such a 
threat point is easy to determine as it correspond to the worst-case 
performance of load balance and energy efficiency, respectively, 
independent of the other objective. The following mechanism is 
designed to prevent players from deviating from such a fair 
solution when they are optimizing its performance selfishly by 
changing its threat value. 

Mechanism 1: Let  (a(k)
LB, a(k)

EE) denote the threat point during 
the kth-iteration and x(k) be the optimal solution to (5), we initialize 
the threat point at (LBworst, EEworst) and constraint the threat value 
updating of each player to satisfy 

Compute traffic 
routing by solving 
problem (5) 

Update threat 
value to optimize 
performance 

Solution to problem (5) 

Threat point 

Initial threat point 

Fig.1 Procedure of repeated threat value game
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( ) ( )

( 1) ( ) ( ) ( )
( )

1 ( ( ))
2 2

k k
LB l

k k k kl E
LB LB LB l

l E

a f x
a a a f x+ ∈

∈

−
≥ − = +

∑
∑     (12.1) 

( ) ( )

( 1) ( ) ( ) ( )
( )

1 ( ( ))
2 2

k k
EE l

k k k kl E
EE EE EE l

l E

a g x
a a a g x+ ∈

∈

−
≥ − = +

∑
∑    (12.2) 

With the above two constraints, each player can only claim to 
occupy half of the performance gap between its threat value and 
its cost corresponding to the solution of (5). 

Lemma 2: Let x* be the optimal solution of optimization 
problem (5) associated with threat point (aLB, aEE), then x* is also 
the optimal solution of problem (5) associated with the threat 

point * *1 1( ( ( )), ( ( )))
2 2LB l EE l

l E l E

a f x a g x
∈ ∈

+ +∑ ∑ . 

Proof: 
 x* is a feasible solution for the problem (5) when the threat 
point is (aLB, aEE), so 

*( )l LB
l E

f x a
∈

≤∑  

then  
* *1( ) ( ( ))

2l LB l
l E l E

f x a f x
∈ ∈

≤ +∑ ∑  

Similarly,  
* *1( ) ( ( ))

2l EE l
l E l E

g x a g x
∈ ∈

≤ +∑ ∑  

The above means that x* is also a feasible solution to the 
optimization problem (5) associated with the threat point 

* *1 1( ( ( )), ( ( )))
2 2LB l EE l

l E l E
a f x a g x

∈ ∈

+ +∑ ∑ . 

On the other hand, the objective of (5) is equivalent to maximize 
log( ( )) log( ( ))LB l l EE l l

l E l E
a f x a g x

∈ ∈

− + −∑ ∑  

Since x* is the optimal solution of (5) associated with the threat 
point (aLB, aEE), so we have 

* *

* *

( ) ( )
0

( ) ( )

l l
l E l E

LB l EE l
l E l E

f x g x

a f x a g x
∈ ∈

∈ ∈

∇ ∇
+ =

− −

∑ ∑
∑ ∑

              (13) 

When the threat point is 
* *1 1( ( ( )), ( ( )))

2 2LB l EE l
l E l E

a f x a g x
∈ ∈

+ +∑ ∑ , 

we should maximize 
*

*

1( ) log( ( ( )) ( ))
2

1log( ( ( ) ( ))
2

LB l l
l E l E

EE l l
l E l E

F x a f x f x

a g x g x

∈ ∈

∈ ∈

= + −

+ + −

∑ ∑

∑ ∑
, 

The gradient of F(x) is 

*

*

( )
( )

1 ( ( )) ( )
2

( )

1 ( ( ) ( )
2

l
l E

LB l l
l E l E

l
l E

EE l l
l E l E

f x
F x

a f x f x

g x

a g x g x

∈

∈ ∈

∈

∈ ∈

∇
∇ =

+ −

∇
+

+ −

∑

∑ ∑

∑

∑ ∑

 

We should note that x=x* will yield ( ) 0F x∇ = . Due to the fact 
that there is only one optimal solution for each Nash bargaining 
problem, accordingly, x* is also the optimal solution of (5) 
associated with the threat point  

* *1 1( ( ( )), ( ( )))
2 2LB l EE l

l E l E
a f x a g x

∈ ∈

+ +∑ ∑ .                ■ 

Theorem 4: If each player optimizes its performance selfishly 
by changing its threat value under Mechanism 1, traffic routing 
will be constant as if the threat point was never changed. 
Proof: 
 During  kth-iteration, each player can at most reduce its threat 
value to 

( ) ( )1 ( ( ))
2

k k
LB l

l E

a f x
∈

+∑  and ( ) ( )1 ( ( ))
2

k k
EE l

l E

a g x
∈

+∑  

which are larger than  
( )( )k

l
l E

f x
∈
∑  and ( )( )k

l
l E

g x
∈
∑  

respectively. So the reduction of threat value will not lead to 
agreement break-down and an infinite cost to the players. 
 According to Lemma 1, player LB will reduce its threat value to 

be ( ) ( )1 ( ( ))
2

k k
LB l

l E
a f x

∈

+∑  and player EE will reduce its threat value 

to be ( ) ( )1 ( ( ))
2

k k
EE l

l E

a g x
∈

+∑  during kth-iteration. 

 From Lemma 2, we know that the optimal solution of (5) will 
be the same as if the threat point was never changed.                     ■ 

Corollary 1: If we set the initial threat point at any points on 
the line connecting threat point (aLB, aEE) and the outcome at the 
optimal solution of (5) corresponding to this threat point, we will 
derive the same solution as if the initial threat point is  (aLB, aEE). 
Proof: 
 This corollary can be proven in the same method as Lemma 2.  
 Assume that x’ is the optimal solution to (5) corresponding to 
the threat value (aLB, aEE) and its associated outcome is 

'( ( '), ( ))l l
l E l E

f x g x
∈ ∈
∑ ∑ . A point on the line connecting (aLB, aEE) 

and '( ( '), ( ))l l
l E l E

f x g x
∈ ∈
∑ ∑  can be represented by  

'( (1 ) ( '), (1 ) ( ))LB l EE l
l E l E

a f x a g xλ λ λ λ
∈ ∈

+ − + −∑ ∑  

weher [0,1]λ ∈  
Setting above point as the threat point, the objective of (5) can be 
varied to be 

{ [ ( )] (1 )[ ( ') ( )]}

{ [ ( )] (1 )[ ( ') ( )]}

LB l l l l l
l E l E l E

LB l l l l l
l E l E l E

a f x f x f x

a g x g x g x

λ λ

λ λ
∈ ∈ ∈

∈ ∈ ∈

− − − −

− − − −

∑ ∑ ∑

∑ ∑ ∑
 

We should maximize 
( ) log{ [ ( )] (1 )[ ( ') ( )]}

log{ [ ( )] (1 )[ ( ') ( )]}

LB l l l l l
l E l E l E

LB l l l l l
l E l E l E

G x a f x f x f x

a g x g x g x

λ λ

λ λ
∈ ∈ ∈

∈ ∈ ∈

= − − − − +

− − − −

∑ ∑ ∑

∑ ∑ ∑
 

The gradient of G(x) is 
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( )
( )

[ ( )] (1 )[ ( ') ( )]

( )

[ ( )] (1 )[ ( ') ( )]

l l
l E

LB l l l l l
l E l E l E

l l
l E

LB l l l l l
l E l E l E

f x
G x

a f x f x f x

g x

a g x g x g x

λ λ

λ λ

∈

∈ ∈ ∈

∈

∈ ∈ ∈

∇
∇ = +

− − − −

∇

− − − −

∑
∑ ∑ ∑

∑
∑ ∑ ∑

 

Since x’ is the optimal solution of (5) associated with the threat 
point (aLB, aEE), so we have 

( ') ( ')
0

( ') ( ')

l l
l E l E

LB l EE l
l E l E

f x g x

a f x a g x
∈ ∈

∈ ∈

∇ ∇
+ =

− −

∑ ∑
∑ ∑

 

Let x=x’, we have 
( ') ( ')

( ) 0
[ ( ')] [ ( ')]

l l
l E l E

LB l LB l
l E l E

f x g x
G x

a f x a g xλ λ
∈ ∈

∈ ∈

∇ ∇
∇ = + =

− −

∑ ∑
∑ ∑

 

Due to the fact that there is only one optimal solution for each 
Nash bargaining problem, accordingly, x* is also the optimal 
solution of (5) associated with the threat point  

'( (1 ) ( '), (1 ) ( ))LB l EE l
l E l E

a f x a g xλ λ λ λ
∈ ∈

+ − + −∑ ∑ .           ■ 

 Corollary 1 tells us that all the points on the line connecting 
(LBworst, EEworst) will lead to a fair solution by setting it as the 
threat point of (5). 

Corollary 2: If the initial threat point is not set as (LBworst, 
EEworst) or any point along the line connecting (LBworst, EEworst) to 
the outcome at the optimal solution of (5), then the solution will 
not converge to the fair tradeoff. 
Proof: 
 This corollary can be proofed by contradiction. Assume that the 
threat value (aLB, aEE) is not on the line connecting (LBworst, EEworst) 
to the outcome at the optimal solution of (5), but it can induce a 
fair tradeoff. That is to say 

* *

* *

( ) ( )
0

( ) ( )

l l
l E l E

LB l EE l
l E l E

f x g x

a f x a g x
∈ ∈

∈ ∈

∇ ∇
+ =

− −

∑ ∑
∑ ∑

 

and 

* *

* *

( ) ( )
0

( ) ( )

l l
l E l E

worst l worst l
l E l E

f x g x

LB f x EE g x
∈ ∈

∈ ∈

∇ ∇
+ =

− −

∑ ∑
∑ ∑

 

where x* is the fair trade off solution. 
The above two equations can induce 

* *

* *

( ) ( )

( ) ( )

LB l EE l
l E l E

worst l worst l
l E l E

a f x a g x

LB f x EE g x
∈ ∈

∈ ∈

− −
=

− −

∑ ∑
∑ ∑

 

It means (aLB, aEE), * *( ( ), ( ))l l
l E l E

f x g x
∈ ∈
∑ ∑  and (LBworst, EEworst) 

are on the same line, where contradiction occurs.                      ■ 
Intuitively, this is because starting with a different threat point 

than (LBworst, EEworst) hides some of the players’ optimization 
space information. Note that although this corollary states that  
the fair solution cannot be derived from any arbitrary initial threat 
points, it has no negative implication as one can easily find (and 
use) the initial threat point (LBworst, EEworst). 

C. Conversion to Convex Optimization Form 
The optimization problem (5) is not in a convex optimization 

form. To solve it more efficiently, we should convert it into the 
form of standard convex optimization form without changing its 
solution. 

Theorem 5: If the optimization problem (5) is feasible, its 
solution will be the same as problem (14): 
maximize      log( ) log( )LB LB EE EEa t a t− + −                                (14) 
subject to:      The constraints in (5) 
        ( )LB l l

l E
t f x

∈

≥ ∑  

        ( )EE l l
l E

t g x
∈

≥ ∑  

Proof: 
 To maximize objective of (14), the variable tLB and tEE should 
be as little as possible. Therefore,  ( )LB l l

l E
t f x

∈

= ∑  and 

( )EE l l
l E

t g x
∈

= ∑  must be satisfied in the optimal solution. So that 

problem (14) is equivalent to maximize 
log( ( )) log( ( ))LB l l EE l l

l E l E
a f x a g x

∈ ∈

− + −∑ ∑          (15) 

When the problem (5) is feasible, we have 
( )l l LB

l E
f x a

∈

≤∑  and ( )l l EE
l E

g x a
∈

≤∑ . 

In this case, the variable maximizing the objective of (5) also 
maximize (15), because log(·) is an increasing function of its 
argument on R+.                                                                          ■ 

Theorem 6: If fl(·) and gl(·) are both convex functions, problem 
(14) is a convex optimization problem. 
Proof: 

Theorem 6 can be verified easily by checking that it does 
satisfy the definition of convex optimization.                          ■ 
Theorem 5 and Theorem 6 guarantee the Nash bargaining solution 
can be solved efficiently. 

VIII. CASE STUDIES 
In this section, we will present two case studies of our methods. 

We will first apply our method in a simple parallel links network 
to realize a fair tradeoff between load balance and energy 
efficiency. It not only presents how our method works but also 
verifies its correctness. We will then apply our method in a 
realistic network NSFNET to show its practicability. All the 
computations are carried out on a computer with Duo-Core 2.20 
GHz intel CPU using CVX1.22 [18]. 

A. Case Study in a Simple Network 
In this subsection, we apply our model in a simple parallel links 

network as shown in Fig. 2 to illustrate how our method works. In 
this network, there are 3 parallel links from node s to node d with 
capacity of 1000, 2000 and 1500 (units) respectively. We also 
assume that there is a demand from s to d for 900 units of capacity 
in the network. 

As discussed in Sections III and IV, we set the cost of load 

balance and energy efficiency to be ( )l
l

xf x
c x

=
−

 and 
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1.5( ) ( )
1000l

xg x =  for all l∈E. From the optimization problem (1), 

we can find that the best case cost for load balance is 0.6783 and 
this solution corresponds to the worst case cost for energy 
efficiency of 0.6223. Similarly, by solving problem (2) we can 
also determine the best case cost for energy efficiency and worst 
case cost for load balance to be 0.4930 and 0.8555 respectively. 
Fig. 3 shows the Pareto frontier and these two limitation scenarios. 
Obviously, such two cases are the bounds of Pareto frontier. Note 
that we choose to use this simple example where the costs for load 
balance and energy efficiency have comparable values in order to 
show (below) that even in such a case, our method is more useful 
than the conventional method that uses an AOF. 

To get a fair solution, we set the threat point to be (0.8555, 
0.6223) and use the optimization problem (15) to derive a fair 
solution. In the solution, the traffic carried by each link is (x1, x2, 
x3) = (151.6013, 442.1033, 306.2954) and the cost for load 
balance and energy efficiency are 0.7191 and 0.5227 respectively. 
We should note the following relationship: 

0.8555 0.7191 0.6223 0.5227 77%
0.8555 0.6783 0.6223 0.4930

− −
= =

− −
 

It means that each player improve its performance with the same 
percentage of its optimization space, which shows that the 
solution derived by our method is fair to both objectives. 

To verify the correctness of our mechanism designed for the 
repeated threat value game, we also apply it in the simple network 
shown in Fig. 2 with the initialized threat point (LBworst, EEworst). 
Fig. 3 shows how the threat point moves when one iteration 
executed after another and the performance of each player in each 
iteration. It also verifies that as long as the initial threat point is 
chosen as (LBworst, EEworst), the result will converge to a fair 
tradeoff solution. 

If one uses the classic AOF method to get a tradeoff for this 
problem, she may set the same weight to both objectives because 
they have the same order of magnitude. In this case, the resulting 
cost for load balance is 0.7081 and the cost for energy efficiency 

is 0.5318. Though this solution is Pareto efficient, energy 
efficiency obtains less performance improvement (70%) than load 
balance (83%).  

In our method, we set the performance threshold of each 
objective to be its worst case performance. If one uses the 
conventional approach whereby one objective is treated as a 
constraint, she obviously cannot use the worse-case performance 
as the threshold value for any of the objective, but what makes 
such an approach difficult is that she also will not know which 
other threshold value is the most appropriate. She may choose a 
medium value between the worst and best cases for example, but 
such a choice is ad hoc at the best and cannot be considered fair. 

B. Case Study in a NSFNET 
In this section, we will use our proposed method to realize a fair 

tradeoff between load balance and energy efficiency in the 
NSFNET backbone network (shown in Fig. 4). In this network, 
each link is bidirectional and without loss of generality, we 
assume that the capacity of each link is 45Mbps (such capacity is 
offered by NSFNET during 1992 and 1995 [19] and was chosen 
to simplify our computation only). To route the demand in the 
network, we find two link disjointed routes between each node 
pairs and we add a 10Mpbs demand between every pair of the six 
supercomputer sites (SDSCNET, NCSA, CNSF, PSCNET, JVNC 
and NCAR). In order to show that our method can derive a fair 
solution even when each objective has a different order of 

magnitude, we set the energy curve of link l to be 1.5( ) ( )
45l
xg x = . 

In this case study scenario, the best case cost for load balance is 
18.3378 while the worst case cost is 2.9597×107, which is much 
worse than the best case. For energy efficiency, the best and worst 
case costs are 5. 42 and 5.8313 respectively. This means that the 
optimization space of load balance is much larger than that of 
energy efficiency.  

Note that if the conventional approach based AOF were to be 
used in this case, one would not know how to set an appropriate 
weight for each objective. More specifically, if she uses more or 
less the same weights for the two objectives, the load balance will 
get much more performance improvement than energy efficiency, 
because it has a larger optimization space than energy efficiency, 
which would be unfair to energy efficiency. In short, a fair 
solution is difficult to obtain by using the AOF method.  

In our method, we set the threat point to be (2.9597×107, 
5.8313) to derive a fair solution. In the solution, the cost of load 
balance is 261.0334 while the cost of energy efficiency is very 
close to 5.4200 (the accuracy is to 10-4). This represents that both 
objectives get 99.999% optimization space. 

s d

l1, c1=1000 

l2, c2=2000 

l3, c3=1500 

Fig. 2 Parallel links network used in case study 
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Fig. 4  Topology of NSFNET 
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IX. CONCLUSION 
In this paper, we have studied how to achieve a fair tradeoff 

between load balance and energy efficiency in traffic engineering. 
Different from the traditional multi-objective optimization 
methods which either construct an aggregate objective function 
(AOF) or treat one of the objectives as a constraint of the problem, 
we have analyzed such a problem from a game theoretic 
perspective. More specifically, we have treated the two objectives 
as two virtual players in a so-called threat value game, who 
negotiate with each other in order to achieve an agreement under 
the Nash bargaining framework. In such a game, each player can 
announce its threat value to optimize its performance and our 
analysis have shown that the number of Nash equilibriums can be 
infinite and each player determines its threat value will prevent  
an agreement, so as to induce an infinite cost to both of them. To 
avoid such an undesirable outcome, we have designed a 
mechanism that can not only reach an agreement but also lead to a 
fair tradeoff between load balance and energy efficiency. In 
addition, it is very easy to find all the initial threat points which 
can be used to get the fair tradeoff solution in our method. 

 Although this work focuses on achieving a fair tradeoff 
between load balance and energy efficiency in traffic engineering, 
it also provides some useful insights into the other multi-objective 
optimization problems. 
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