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Abstract

Non-cooperative channel assignment, i.e., channel asgighfor selfish wireless devices, is highly
challenging, especially in multiple collision domains. tims paper, we study the problem of non-
cooperative multi-radio channel assignment in multipldision domains and focus on the fairness issue.
We first conduct an analysis of the fairness property of thstesy assuming no incentive-compatible
scheme is deployed. We show that, without any incentivepaiible scheme for channel assignment,
the stable states of the system may well be max-min unfaordier to guarantee fairness, we propose
a channel assignment scheme for multiple collision domtiasis incentive compatible. We rigorously

show that our proposed scheme can always achieve NEs witlplemmfairness. Simulation results

verify that our scheme guarantees complete fairness.

I. INTRODUCTION

The problem of channel assignment has been studied extgnsivwireless networks. In
particular, given the increasing popularity of multi-radvireless devices, a number of works
have been done on the multi-radio channel assignment.

In many wireless networks, a lot of devices belong to selfsdrsiwho have their own interests.

These selfish users will let their devices deviate from th@qmols as long as this will benefit
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themselves. Hence, it is important to design incentiveqzatible channel assignment schemes
that can function well in the presence of selfish users—thallednon-cooperativenulti-radio
channel assignment, because the involved devices arehselffeer than cooperative.

Existing works (e.g., [1]-[4]) have studied non-coopemtmulti-radio channel assignment,
but they are restricted to the setting of a single collisiamdin. Unlike these works, in this
paper, we consider non-cooperative multi-radio chanrggasment in multiple collision domains.
Specifically, we focus on the fairness of channel assignnmestich a setting.

Our study mainly consists of two parts. In the first part, weuase that there is no incentive-
compatible scheme deployed, and analyze the fairnessnyaifehe stable states that the system
will converge to. Our analysis is in a game theoretic modélctv allows us to obtain quantified
results on the fairness of the stable states (narikelyh Equilibria(NEs) in the game model).
The results indicate that the system could reach some NEstbBanax-min unfair.

To guarantee fairness, we propose an incentive-compatileme for channel assignment in
multiple collision domains. As in many existing works on powoperative wireless networks
(e.q., [1], [4]-[6]), the main tool used to provide incemsvis payment (of credit, or virtual
money). Note that it is reasonable to require users to payhichannels they are assigned to,
because communication channels are a type of scarce resourc

The following is a summary of our contributions in this paper

« This is thefirst work to study fairness of non-cooperative multi-radio aimelnassignment
in multiple collision domains.

« Assuming there is no incentive compatible scheme, we aadhg fairness property of NEs
in the game of multi-radio channel assignment in multipldigion domains. We find that
there are cases in which most NEs are max-min unfair.

« We propose an incentive-compatible scheme for multi-ratd@Ennel assignment in multiple
collision domains. Through rigorous analysis, we show thatscheme provides complete
fairness to all nodes.

« Simulations in GloMoSim [7] verify that our scheme guarasteomplete fairness.

The rest of this paper is organized as follows. In Sectiondl present technical preliminar-

ies. In Section Ill we analyze the fairness property assgmio incentive-compatible channel
assignment scheme is used. In Section IV, we propose ountimeecompatible scheme for

multi-radio channel assignment. Evaluation results aesgmted in Section V.We conclude our



paper in Section VI.

[I. TECHNICAL PRELIMINARIES

In this section, we describe the system model in which weyaeahon-cooperative channel
assignment. Specifically, we define a game of channel assignim multiple collision domains.

We also review some game theoretic definitions used in lags pf this paper.

A. Model

As in [1], [2], [4], we assume that the available frequencydbas divided into orthogonal
channels. Denote the set of channels(hyin the system, each node hA&stransceivers and can
establish a bidirectional communication with another ndgjetuning a pair of transceivers (one
transceiver from each node) to the same channel. Each nodé&assmit packets to another
node using multiple channels. Denote Bythe set of communicating node pairs. There [dre
communicating pairs in the system and each node is only\wedoin one such node pair. We
also assume that the channels have same characteristiestidb there exist some node pairs
that cannot interfere with the communications of some offars, even if they are all using
the same channel. In other words, the communicating pagrsnamultiple collision domains.
We use the interference model (e.g. in [8]) that if two comioating pairs within each other’s
interference range are transmitting packets on the samenehat the same time, neither of
them can successfully transmit any useful data.

Our model for multi-radio channel assignment in multipldlismn domains is a strategic
game. In the game, each player is a pair of communicatingsio&ke in many existing works
on channel assignment in multiple collision domains (e.[@]}-[11]), we assume that time is
divided intoT slots, each of a fixed length, whefeis a large number. In the channel assignment
game, a player’s strategy is his choice of channels for @létslots.

Formally, the strategy of player a; is defined asi; = {A; .|l <t <T,ce C}, where

1 if 4is using channet in slot ¢,
i,ct —

0 if 4 is not using channet in slot t.

The strategy profile: is a matrix that includes all players’ strategies, ie= (a1, az, - -, ajp|)-

Denote bya_; the profile of all players except



A flow contention graph can represent the interferenceioglship among players. Defing;
to be the set of players who are connected with the flow contention graph. We caN; the
interference set of player Let n,,,, = maxcp|N;|.

Denote byk;, the number of channels used by playen any time slott, i.e., Vi, Vt, k;; =
> ccc Aicy. To define the payoff function for each playgrwe must note that in each time
slot, whether it can successfully transmit packets depemdgs strategy as well as those of
players in its interference set. Assume that the amount of utility that a player can obtain
by transmitting data through one radio in a time sfé? < r) is the cost in each time slot for
one radio to transmit data. Then, the payoff for each playsrdefined in Eq. (1).

U; = zT: (7’ E (Ai,c,t : H (1 - Aj,c,t)) -3 ki,t) (1)

t=1 ceC JEN;

Note that any playei can successfully transmit on one channel only if no playdrisninterfer-
ence set uses that channel. Eq. (1) reflects this fact by phyaftg A; ., by [,y (1 — Ajc0)-

B. Definitions

Before analyzing the channel assignment game, we firstwes@mne of the definitions that
we use in later parts of this paper.

Definition 1: (Nash Equilibrium (NE)) [12] The strategy profite' = {a7, a3, -+, a/p } is a
Nash equilibrium (NE) if for every player, we have thata!, a*;) > u;(a;, a*;) for all strategy
a;.

The main objective of this paper is to study fairness in thenclel assignment game described
above. Here we distinguish two levels of fairness: max-maimgss [13], which is weaker, and
complete fairness, which is stronger.

Definition 2: (Max-Min Fairness) A strategy profile™™/ is max-min fair if for every strategy
profile s such that there exists playee P, u;(a™™) < u;(a), there must exist another player
j € P, uj(a) < uj(a™) < u;(a™m)). Otherwise, it is max-min unfair.

Definition 3: (Complete Fairness) The strategy profild achieves complete fairness if the

payoffs of all players are equal.

[1l. A NALYSIS OF FAINESS WITHOUT INCENTIVECOMPATIBLE SCHEMES

In this section, we rigorously analyze the NEs in a systenmhaut incentive-compatible

schemes, studying their fairness. We first prove that, inessoenarios, some NEs are max-



min unfair to players in terms of payoffs. Then we give an concrete eXarsipowing that in

some cases, most NEs are max-min unfair.

Proposition 1: With |C| < K, if a Nash equilibrium strategy profile* has an outcome s.t.
for a clique E' of sizen in the flow contention graphdi € E,s.t. Vj € E,j # i,u; < uj
andd(i) < 2n — 1 (whered(:) is the degree of in the flow contention graph), thes is not

max-min fair.

Proof: First we show that in a Nash equilibrium, the payoff of playel can be written as
= > > Ai..(r—pB). Actually,if a* isaNE, theni, ¢, c,if A7 ., =1, [[,cn, (1 — A5 ;) = 1.

0<t<T ceC

To show this, supposéi,t,c s.t. A7, = 1 and [[;y (1 — A]

iet) = 0. We consider another

strategy fori, a;, which equals:* except for4; ., = 0. Then we compare the utilities of player

i taking strategy:; anda; when the strategies of players remain the same.

ui—uf = Ai,C,t/ H( A;ct) /BAZCt (A;kct H (1 jct) ﬁAzct)

JEN; JEN;
= 0-(=0)>0
This contradicts with the fact that is a Nash equilibrium.

Now we suppose we have a cligueof sizen in the flow contention graph. We denote the
player with the strict minimum payoff itk by i, i.e.Vj € E,j # i,u; < uj.

We consider the two cases @fi) to show that no matter in which case, playeran always
increase its payoff without affecting the players with levpayoffs thani.

Case 1d(i) =n — 1. Foruj > uj, 3(t,c) s.t. A5, = 1, A7, = 0. In this time slot, all the
other players do not have radios on chamnele.Vh € E,h # j, A; ., = 0, because otherwise
h and j are interfering with each other and thus would not be a Nash equilibrium. Since
d(i) = n—1 means that the players ifs interference set are all i, by makings; ., = 1 and
Aj. =0, can increase its payoff without decreasing others’ payefiseptu;. Thereforea”

IS not max-min fair.

Case 2d(i) > n—1. In this case, there are some playergsrinterference set but not in clique
A. We denote the player sét= {q|q € N;,q ¢ E,u, < u;}. From|Q|+n—1 < d(i) < 2n—1,
we can obtain thatQ| <n — 1.

Becausevg € Q,u; < uj and|Q| <n — 1, we get

(n_l) Z ZAzct—Z Z Zcht (2)

0<t<T ceC qeQ 0<t<T ceC



Furthermore, from.} > u;, we have

Z Z A;c,t > Z ZA:,c,t (3)

0<t<T ceC 0<t<T ceC

Combining (2) and (3),

Z Z ZA;,c,t > (n_l) Z ZA?,c,tZ Z Z ZAZ,c,t (4)

JEE,j#i 0<t<T ceC 0<t<T ceC q€eQ 0<t<T ceC
SinceVt, ¢, > icp iz Aer < 1, 1o satisfy (4), there must existe, s.t.> . p ., AT, =1
and)_ ., A4; .. = 0. Then playeri can increase its payoff by putting one spare radio on channel
¢ in time slotc, while the payoffs of players i) will not be decreased since no interference is
caused with them.
This completes the proof of Proposition 1. [ |
Using Proposition 1, now we demonstrate that, in some smEjanost NEs are max-min

unfair.

Example. Consider, the flow contention graph in Fig. 1.

Oo—0—70

1 2 3

Fig. 1. The flow contention graph in example of unfairness.

In this example, we assume that each playershesdios and that there akechannelsga, b,
available. It is easy to get that the Nash equilibrium chamassignment should fall in one of
the cases shown in Fig. 2. Since player 1 and 2 form a cliquézefZin the flow contention
graph, by Proposition 1, a NE being max-min fair requireg tha= uy. Similarly, u, = ug is
also required. This means that cases (I) and (Ill) need t@dmain the same number of time
slots. So, if the total number of slofs = 2, the number of max-min fair Nash equilibria is only
6 (4 NEs when neither (1) or (Ill) ever happens and 2 NEs wheth ijptand (IlI) only happen
in one time slot), while there ar¥ = 16 Nash equilibria in total. Thereforé2.5% of the Nash

equilibria in this scenario are max-min unfair.

IV. SCHEME FOR COMPLETE FAIRNESS TO PLAYER$SCF)

In this section, we provide an incentive-compatible chamassignment scheme to make sure

that all the NEs provide complete fairness to all the players



Fig. 2. Nash equilibrium channel assignment cases in ang 8hat. (The 'a’ or 'b’ denotes the channel(s) that the player

assigns its radios to.)

As in many existing works on non-cooperative wireless nektwde.g., [1], [4]-[6], among
others), we use an economic tool, payment, in our schemeidesshat there is virtual currency
circulating in the system. Before using channels, eacheplags to first pay the administrator
for his use of the channels.

To calculate the payment for each player, we use the topmbgiformation of each node.
Specifically, we assume that the flow contention graph igtparéd into a number of maximal
independent sets, and that, before the channel assignraem gtarts, each player receives the
ID of its independent set ID as an input. In practice, thisejpehdent set ID can be obtained
in various ways. One possibility is that a central agency Wwhows the global topology runs
an algorithm to find maximum independent sets in rounds. dhsacentralized approach is not
applicable or undesirable, we can also use a distributeatitlign with reasonable complexity,
running locally at each player to find which independent seheplayer belongs to. To provide
good performance as well as time efficiency, the idea of soppeoximation algorithms (e.g.
[14]) for maximal independent set partition can be usefubwidver, we do not discuss the
details of the algorithm for finding the independent set IDs;ause it is orthogonal to the main
problems we solve. In this paper, we assume that indepesdéentire sorted such that a smaller
independent set ID implies that the independent set is datge

We outline our scheme, the Scheme for Complete Fairness)(S&Mrotocol 1. In this
scheme, we use the maximal independent setilRgs;» to compute the amount of payment
each player should make in each slot. ketdenote the total number of independent sets in

the system. To achieve complete fairness, we need to gival egportunities to all players for

We also assume that after the maximal independent setipastihe number of maximal independent sets is greater than

[%W because otherwise it is trivial to have all radios assigwétout any interference.



use of channels. We introduce a special independent setdctile token independent set for
each slott, whose ID is denoted by’. Our main idea here is to let each independent set be
the token independent set in a round-robin fashion. In eswh slot, only the players in the
independent sets with IDs smaller thgh by no more thar‘{%J, are encouraged to put their
radios on channels to transmit packets (as discussed bef@ngach independent set is taking

turns to be the token independent set, players can obtaipletenfairness.

Protocol 1 Outline of Scheme for Complete Fairness (SCF)
In time slott,

(a) Each playeri computes

XL = (t mod m).

Xt =t —i.mrs1p) mod m.

(b) Each player decides to usé; ; radios and makes payment

(T—ﬂ)'ki,t'ﬁ'
R +e

Pit =

®)

(€ If xt < L‘—?J, i keeps changing its strategy until it gets all its radiosgnaitting successfully; Ify! = L‘—?J,

1 keeps changing its strategy until it ge€s| mod K radios transmitting successfully.

When we plug in the payment formula Eq. (5) in Protocol 1 ifte payoff function for each
player introduced in Section I, we can obtain the followingdated payoff function, assuming

no collisions.
T

T — ) kig- X
r~<Ai,c,t-H<1—Aj,c,t>>—6§’fivt—2<r B

1ceC jEN; = Lglte
T T T =) kiy -y,

_ Er'ki,t_ﬁzki,t_z< ﬁ) it Xs
=1 =1

3]
t=1 U_K‘J +€

-~ (r—08) (1 - 7L%>j§+ 6) Ki.

For each playet, if x! is smaller than or equal t@%J, it will get higher payoff if it increases

=

U; =

o~
Il

I
hE

its number of radios to transmit packets (becap"%éj and x! are both integers and we define
0 < e < 1). On the other hand, if! > L%J, the payoff will decrease as the playieuses more
radios to transmit packets.

Formally, we have the following theorems. Theorem 1 shovet thour scheme is used,



the system will converge to NEs with certain properties.drben 2 says with these properties,
complete fairness is guaranteed.

Theorem 1:If SCF is used, all the NEs satisfy that for all playeiin all time slott,

Ko < [F)
kip=19 |C] mod K if yxi= ] (6)
0 o.w.

Proof: First we show that the stateé’ which satisfies (6) is a Nash equilibrium. Then we

show that SCF will only reach the staté.

Now we show that state* which satisfies (6) is a Nash equilibrium, which guarantdwes t
players do not have incentives to deviate frafmunilaterally.

Let u;" denote the payoff of by taking other strategy; that does not satisfy (6}, is used
in a;. Since interference will result in even lower payoffs foaygrs, in the proof, we only
consider the best payoffs possible 4y i.e., assuming that there is no interferenceahy

There are 3 possible cases.

Case 1x! > |9 u/ —u; =S (r— ) (1 - ﬁ) ki; < 0, because(! and || are

integers and thu \C\J > 1.

Case 2. < ). w/ —u; = ,(r — B) (1 - W) (k,— K) <0, since L‘C‘J <1
andk;,/ — K <0.

Case 3! = L'C‘j If other players not in Case 3 follow the channel assignmestlts as
in (6), the number of channels that playeman use without interference is at most mod K
(i.e. ki, < |C| mod K). Also from L‘C‘J < 1. We can obtain that;(a}, a*,;) —ul(af,a*;) <0.

To show that SCF will always reach the state that satisfiesw®) first notice that (6) is
achievable within the system capacity. By Eq. (6), only pfayin || — 1 independent sets
useK radios and the player ih the independent set of su{é,? | use|C| mod K radios. When
players in the same independent set allocate their radide@same set of channels, the total
number of channels without interference required by (Q’)H%'J — 1)K +|C| mod K, which is
no more than the number of channels in the sysi€im On the other hand, the system will not
stabilize in any state that does not satisfy (6), due to thetegjy changing conditions in SCF
(step (c)). Hence the probability of reaching the statesBatig (6) from any state is positive.

Therefore, SCF always converges to NEs which satisfy (6). [ |
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Theorem 2:(Complete Fairness) Suppose thHat-> m. If SCF is used, every NE is com-
pletely fair.
Proof: First we note that in anyn continuous timeslots, each independent set ID in
{1,2,---m} happens to equal’ once, due to the definition of:. So from (6), in any NE, for

each playet, there is one time slot in which he us€$ mod K radios. Also it is not difficult to
el
K
in any m continuous timeslots is- — ) (K - L%J +|C| mod K). Given thatl’ >> m, L is an

get that for each player he fully utilizes K radios in| = | time slots. The payoff of each player
integer. Therefore, the payoff of each player in the entinegis” (r—3) (K- U—IC('J +|C| mod K),

which implies complete fairness. [ |

V. EVALUATIONS

In this section, we conduct simulations in GloMoSim [7] tadt SCF. Maximal independent
sets are computed before the start of the game by the appmbaimalgorithm in [14].

The simulations are done in a randomly generated netwo @iirs of nodes, as illustrated
in Fig. 3 (where each dot represents a pair). Each pair dsnsiswo nodes20 meters apart.
Within each pair, the data flow is bidirectional at a constamé¢. The length of each time slot

is set to be30 seconds.

1,000

800 o8
®
600 fs IR

400

200 9 &
dod '13;}

4
42 o6

0 200 400 600 800 1,000

Fig. 3. The flow contention graph of the network.

We test our scheme SCF in two settings. In one setting, wehketnumber of channels
|C'| = 12, channel capacityz = 54 Mbps, and the number of radids = 4. In the other setting,
we let|C| = 3, R =11 Mbps andK = 2. We take the average of results o0 runs.

In Section V-A, we evaluate SCF by measuring the fairness®ftable states of the system,

and compare it with the fairness of NEs when there is no imeemompatible schemes. In
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Section V-B we measure the fairness in the processes ofnsysiavergence.

A. Evaluation of Fairness

To measure the fairness among players, we utilize Jainsdss index [15] as a quantitative
metric. Fairness index is a real number, ranging flof6®(worst) to 1(best) for the system af0
players. We measure the fairness indices of the systeniitesstates achieved by SCF and the
average fairness indices of random NEs, which should béheshahen there is no incentive-
compatible channel assignment scheme. We repeat the mqres with different traffic rates
. The results are shown in Fig. 4 and 5, where the curves foF"S€present the fairness
indices for SCF, and the curves for “No Protocol” represéet fairness indices when there is
no incentive compatible scheme. We can see that for botihhgefC| = 3, K = 2 and|C| = 12,

K = 4, respectively), SCF guarantees that the system has faiindges very close to 1, or
even equal to 1. This verifies the effectiveness of SCF ineaiig complete fairness, which
is much better than the average fairness indices of NEs whene is no incentive compatible

scheme.
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Fig. 4. Fairness index|@| =3, K =2, R = 11Mbps.)
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Fig. 5. Fairness index|@| = 12, K =4, R = 54Mbps.)
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B. System Convergence

We are not only interested in fairness of the stable stat#salso interested in fairness of
the dynamic convergence process. In this subsection, waiegaairness of the processes the
system converges to a stable state. We keep track of thesaiindex value for SCF when the
systems are converging to the stable state, and show thigsrgskig. 6. In this experiment, the
traffic demand rate i80 Mbps. We can see that, within aboli00 seconds, the fairness index

gets close td.

;|

Fairness Index
o o o
= o »

o
N

o

500 1000 1500 2000 2500 3000
Time(s)

o

Fig. 6. Convergence of fairness index of SCF.

VI. CONCLUSION

In this paper, we study the fairness of non-cooperative imaidio channel assignment in
multiple collision domains, and obtain two major resultbeTfirst major result is that, without
an incentive-compatible channel assignment scheme, giersyis likely to converge to NEs that
are max-min unfair to the players. The second major resudnisncentive-compatible scheme
we design for multi-radio channel assignment in multipldision domains, and a formal proof
that the scheme guarantees complete fairness. Experimesulis have verified the results of

theoretical analysis.
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