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Abstract Keywords

With the inclusion of actuation capabilities, emerging Transactions, optimistic concurrency control, seriddiza
wireless sensor applications are much less tolerant tminco ity, programming abstractions, wireless sensor networks
sistencies in decisions compared to passive sensing applic :
tions. Multi-hop networks suffer from these problems more 1 Introduction

profoundly as they cannot directly utilize atomic broadcas _ Wireless sensor networks (WSNs) and the emerg-
operations for coordination. ing wireless sensor/actuator networks (WSANs) em-

In this study, we provide a lightweight single hop ploy in-network/decentralized computation in order to re-
primitive, Read-All-Write-Self (RAWS), that achieves opti- dUCe communication costs. ~Message passing is usu-
mistic concurrency control. RAWS guarantees serializabil- 2lly the only paradigm used for implementing these in-
ity, which simplifies implementation and verification of dis network/decentralized algorithms. Although message-pass
tributed algorithms, compared to the low level message-pass IN9 IS expressive enough, it entails substantial compjemit
ing model. We also present a self-stabilizing multi-hop ex- 2nalysis and implementation due to the concurrent exatutio
tension of RAWS, called Multi-hop Optimistic Concurrency problems. Unintentional and unwanted nondeterministic ex
Control Algorithm (MOCCA), to address the challenges of ecutions can haunt _the correctness of the decentralized alg
multi-hop networks. MOCCA improves the performance of "'thms, and the application programmer should not be unduly
RAWS transactions in multi-hop networks while maintain- bl_erened to detect, dgbug, and prevent such race con.dltlons
ing serializability. ngher order abstr_actlons should_ be adopt_ed to simplify the

We implement MOCCA in JProwler simulator using design anq analysis of decentralized algorithms by transpa
TDMA- and CSMA-based MAC layers and compare it e_ntly solving the concurrency control problem.. However,
against a lightweight locking scheme and serial execution high order abstractions should themselves be implemented

of transactions. Our results indicate that concurrent exe-'"an energy-efﬂment/low-cost manner, in order not to defe
cution in MOCCA can outperform serial execution in task 1€ PUrpose of in-network computation.
completion time via better utilization of broadcasts and-co In this study we utilize atomicity of broadcast messages
current execution. Finally, we also show that under heavy [0 Provide a low-cost single hop primitive with optimistic
loads optimistic concurrency control provides much better concurrency control: Read-All-Write-Self (RAWS). RAWS
performance compared to locking schemes. transactions can be used to model a limited form of shared
. . . memory operations without sacrificing performance. We
Categories and Subject Descriptors limit the extent of transactions to single hop for tighteneo
C.3 [Special-Purpose  and  Application-Based  currency guarantees and high performance. Even with this

System$:  Real-time and embedded systems; D.1.3 |imijtation, complicated and highly concurrent algorithms

[Programming Techniqueg: Concurrent Programming—  can be implemented using RAWS transactions.

Distributed Programming Multi-hop networks introduce additional challenges for

General Terms concurrency control. The atomic synchronous broadcasts
Algorithms, Reliability, Verification available in single hop are not directly supported in multi-

hop networks. Moreover, in multi-hop networks, dependen-
cies among transactions get more complicated. We demon-
strate the concurrency challenges of multi-hop networks in
Section[B and present quantitative analysis of these prob-
lems in Sectionl6. Our solution to address these challenges
is an incremental, self-stabilizing algorithm: Multi-hQp-

Permission to make digital or hard copies of all or part of this work for personal timistic Concurrency Control A|gorithm (MOCCA)_
classroom use is granted without fee provided that copies are not made outistrib

for profit or commercial advantage and that copies bear this notice and the fubeitati 1.1 Related Work

on the first page. To copy otherwise, to republish, to post on servers or ttritedes : ; _
to lists, requires prior specific permission and/or a fee. ngrammmg abstractions for _\NSNS and _ad hoc net
works. Several useful programming abstractions have been



proposed for WSNs, including Kairos [10], Hodd [28], ab- increased traffic, multiple points of failure and complex se
stract regiond [27], and TeenyLinle [4]. Kairos allows a pro- mantics. The authors also do not address inconsistencies in
grammer to express global behavior expected of a WSN in multi-hop environment. Our work on the other hand, pro-
a centralized sequential program and provides compile-tim vides a single phase primitive with minimal communication
and runtime systems for deploying and executing the pro- and itis the first optimistic concurrency control algoritfon
gram on the network. Hood provides an API that facili- WSNSs that can function in multi-hop networks with consis-
tates exchanging information among a node and its neigh-tency guarantees.

b_ors_, by cachl_ng t_he values of the ne_lghbors attributes pe- 1.2 Contributions

riodically, while simultaneously sharing the values of the
node’s own attributes. Similar to Hood, abstract regiors an
TeenyLime propose mechanisms for discovery and sharin . o X
of da)t/a (stru?:tu?ed in terms of tuples) among )s/ensor nodeg.self (RAWS). RAWS transactions utilize atomic broadcast

In contrast to these abstractions that target WSNs and pro-ature of radios in WSNs to ensure serializability. Each
vide best-effort semantics (loosely-synchronized, availyy ~ ansaction allows reading variables from single-hop Ineig
consistent view of system states), RAWS and MOCCA fo- POrs and modification of local variables. Our RAWS ab-
cus on providing a dependable framework with well-defined Straction simplifies development through simpler valiotati
consistency and conflict-serializability guarantees. of system properties. I .
Linda [2,[21] and virtual node infrastructures (VN) [6] Optimistic concurrency control primitives need special
propose high-level programming abstractions for coping c%rle when applied ;]9 rr]nu_ln-rllo?] domain. Wef "_Z:em'fy_ p(l)S-
with the challenges of building scalable applications qn to  >'0'¢ Scenarios in which single hop primitives fail in a rult
of distributed, and potentially mobile, ad hoc networks. hop network. We provide a solution to this problem without

These absiacions can be convertd 1o shared memry profCfe™ he beneftsof opimsto concutency condit
grams which, in turn, can be realized through RAWS trans- ~_ =~~~ g¢, . . Yy
actions. optimistic concurrency control in multi-hop wireless sens

Programming abstractions for concurrency control networks.
Recently, there has been a lot of work on transactions for mo- Apart from the programming convenience, concurrent ex-
bile ad hoc networks [24, 17, 15,116 22] 1B, 3]. Concurrency S¢ution can be beneficial from an energy efficiency per-
control in RAWS and MOCCA diverges from these work and SPECtive. Energy efficiency can be improved by reducing
the transactions in the database context significantlys&he %Z?n%?ggirg#n'.?ﬁ:goungﬁ?gcrrzgggg%éﬂiJ'rrrg?]sq%'g?g Zic;rtatlacsall(n
work all assume a centralized database at the server, and tr ’ o : ' - ;

: ; o g e transferred to more recipients with less transmissions i
to address the consistency of transactions by mobile slient smaller time. Our results ingzcate that concurrency andemor
In contrast, in RAWS there is no central database repository ifically o Gimisti ol ble af
or arbiter; the control and sensor variables are maintained>SPEC!TICally OpUMISHC concurrency control IS capable m-
distributefjly over several nodes viding significant benefits in both execution time and energy

e ' . use due to the possibility of exploiting broadcast nature of
ren?:lsilgﬁttreoﬁl gﬁ:ja?@z?shl;iz t\év(;) mpnfj”a:sf%rlogﬁgnu%i;or gg;}gﬁ radio communication. Concurrency also reduces the impact
comgletion of distribute% transactiorid (8,1 19] 20] gIn con- of processing delays to performance since processingsielay
trast to OCC, which performs a lazy evaluation to resolve can also be made concurrent and overlapping. We provide

conflicts (if any), two-phase locking takes a speculative ap 2€tailed 5|m_ulat|.ons to support these claims in Se¢fion 6.
proach and prevents any possibility of conflittg forbid- 1.3 Applications

In this study we provide a light-weight transaction prim-
itive with optimistic concurrency control: Read-All-Write

ding any read-write or write-write incompatibilities in ¢h A major application of our transactional primitive is in
first place However, this aggressive strategy takes its toll on data aggregation and integration. Due to environmental fac
the concurrency of the system. tors and sensor characteristics, single node measurements

Software transactional memory (STM) [25/11] 12, 23] is are prone to errors. Although data integration techniqaes a
a concurrent programming scheme with multiple threads. In the basestation can be used to filter out noise, this approach
STM conventional critical sections for controlling accéss  wastes energy as data are relayed to the basestation regard-
shared memory are replaced by transactions. In RAWS, thereless of its quality. Distributed false positive eliminatialgo-
is no actual shared memory as the variables are distributedrithms can address this issue by discarding noisy data. De-
among nodes. tecting false positives can be considered as a special €ase o

A closely related work to ours is the Transact wdrk [5] consensus, where nodes in a locality need to agree whether
which presented a transactional programming primitive for to report a detection or not. Although specifics of algorishm
WSNs. In contrast to Transact, which uses a Read-All- can be different, all require a non-local operation to idelu
Write-All model, in our work we use a Read-All-Write-  information from other nodes. A consistent, reliable and se
Self model with much less communication cost and much rializable primitive, such as ours, greatly simplifies iyl
smaller transaction duration. Transact model depends onmentation of such algorithms.
explicit conflict detection and cancel operations for deria A more general form of the data integration/aggregation
izability. Although Read-All-Write-All model is quite ex-  problem is the implementation of a distributed decisioe tre
pressive, conflict detection and cancel operations effelgti Distributed decision tree algorithms are applicable wreta d
triple transaction duration. The Transact model suffesefr  needed for computation is substantially larger than the de-



sired output. High throughput sensors including cameras Algorithm 2 Contributor algorithm for RAWS

and microphones are unsuitable for raw data streaming to the 1. wait for an initiation message

base station. With these sensors, tasks such as anomaly ant: clear completed transactions from list

intrusion detection, target tracking and classificatioquree add new transaction to list of transactions

local computation. Distributed execution of these aldnonis if conflict detectedthen

would also benefit from our primitive. remove transaction from list of transactions
Highly dynamic systems which contain mobile agents and else

actuators, introduce additional challenges as the envieort if involved in transactiothen

changes quickly and unpredictably. Allocation of robots to send read-response

different tasks and tracking multiple mobile targets are ex return

amples of such scenarios. Our primitives can simplify im- 10: endif

plementation of algorithms under such scenarios by reducin 11: end if

the complexity of common intra-node synchronization.

2 RAWS: Read All Write Self L N
. ) Conflicts in optimistic concurrency control correspond to
The RAWS primitive provides a means for each sensor 4 et of non serializable transactions. Conflicting transac

node to perform non-local computations in a serializable jons when run in parallel, produce a state not achievable
manner. The RAWS primitive consists of a transaction initi- it any serial order of executions. We give more details on
ation message that reads a subset of local neighborhood fol) approach for detecting and preventing conflicts next.
lowed by read responses from queried nodes. RAWS Writes2 1 Conflict Detection

only to the initiator node and the set of variables to be modi- ="
fied is included in the initiation message. RAWS transactions
utilize time-based commits where the transaction is commit
ted (or canceled) after a fixed duration following the read
qguery. Since only the initiator state can be modified using

RAWS, only the initiator needs to keep track of the success correctness. to the more restrictive lockina-based poioc
of the transaction. Two conditions must be satisfied at the ’ . . L g po .
A set of transactions is serializable if and only if their

initiator for a RAWS transaction to be successful: no con- . ; . T

: dependency graph is acyclicl [9]. Conflict detection is em-
fl|c_ts ghf#ﬂd be ddetgctehd and dall read Irlezponse_sb must bg re[BIOF))/ed to n)’/la%ntzgin this )érope[rt]y for all concurrent trans-
ceived. The nodes in the read set, called contributor nodes,” ; ; : .

; : . > P ‘actions by labeling any cyclic dependencies as conflicts.
engage in this process by W|thh0|d|ng the transmission of Wheneve?a new tr%nsa)étioﬁ is star?ed all nodes run the con-
reafl resporll_se? When_ theé g\?\;gﬁ contflicts. ¢ ’ flict detection algorithm shown in Algorithin] 3. Note that

¢ ”yt"?‘pp 'Ct;" Itot?l usmtg st t?an eanqueude a rartﬁac 10N 5 directed graph will have a valid topological order if and
at any ime, but the actual start ime depends on otner run-, . i it is acyclic. This fact is utilized in this algorithrfor
ning transactions. Additionally, the started transactioght detecting conflicts
fail due to conflicts. When this happens the application is no- '
tified so the transaction might be repeated or other recovery - - -
action might be taken. The application starting the trans- Algorithm 3 Conflict Detection
action runs Algorithnill, and all nodes run Algoritlih 2 to  1: E < {} // Set of dependencies is initially empty

Optimistic concurrency control assumes that transactions
will be compatible with each other most of the time. Instead
of preemptively preventing concurrency, conflicting trans
tions are aborted at the time of detection. As long as all con-
flicts are detected this scheme will be equivalent, in terms o

handle requests from initiators. 2: forall Transactior_m; in t_ransaction_ Iisif do
3: for all Transactions! in transaction lisT do
Algorithm 1 Initiator algorithm for RAWS 4_ if t reads initiator ol then
8 - . 5: E — EU(t,u) //t depends on u

1: add new transaction to list of transactions 6 end if

2: if conflict detectedhen 7 end for

3:  remove transaction from list of transactions 8: end for

4. return FAIL 9: topologically sort transactiorik usingE as order

5.else 10: if ordering possibl¢hen

6: Send |n|_t|at|on message 11: return FALSE // transactions are serializable so no conflicts

7:  wait until commit time 12: else

8 if all read res_ponses receiveten 13: return TRUE// transactions are not serializable so report con-

9: update variable flict

10: return SUCCESS 14: end if

11: else

12: remove transaction from list of transactions . L
13- return  FAIL When_th_e_re is no message Ic_)ss and all nodes are in single

. ; hop, an initiator can run Algorithria] 3 to prevent any con-

14: endif o . X ; "

15: end if flicting RAWS transaction from starting. So in this ideal

scenario, all transactions would be serializable. Regjobtt
in real life, neither of these assumptions can be taken for



Figure[1 demonstrates a pathological scenario in which
it would not be possible to solve using such an approach.
In this scenario, each node starts its transaction at tinte un
corresponding to its node id and transaction duration is 10
time units. Table in Figurgl1 describes a trace of execution
for this scenario wherg;j is the transaction of nodeand
S is the set of transaction dependencies known by riode
after transmission of corresponding initiation message. W

T S$S={5—0} denote transaction on nodelepends on transaction at node
S$={5—0} i with i — j. Even after all nodes initiate their transactions,
1, | $={5—-03-1} no node is capable of detecting the cycle in the network. An
'l s={3-1} important observation for this sequence is that the alitligh
T, S={3—-14-2} nodes (0,1 and 2) start before the dark nodes (3,4 and 5).
S$S={5—0,4—2} With this order, information from at most 2-hop neighbors
T $={5—0,0—-3,3—-1} can arrive to any node. Node 0 does not have information of
31 5={5—-00—-33—-1} dependency between nodes 1 and 4, Node 2 does not have
T $5={5—400—-33-11-44-2} information about dependency between nodes 3 and 1, etc.
= {3—1,1—-44-2} Utilizing read responses in this process as well is equiva-
T $={5—-03—-11-44—-22-5} lent to repeating this process twice while keeping the known
51 $={5—-00—-33-14—-22-5} dependencies. This extension solves the case in Higuré 1, bu

fails in a similarly constructed scenario with 10 nodes. &or
Figure 1. A pathological multi-hop dependency graph.  generally fom round of messaging, there existsra42 node
Circles correspond to nodes and arrows show depen-  scenario that can not be solved with this method. Each round
dencies between RAWS transactions running on nodes.  of messaging after first round increases the length of dadect
Transactions are all concurrent and started with the nu- chains by 2 from each side, hence the 4 factor in the for-
merical order. T; represents the result of transaction ini- mula. In conclusion, this method requir€n) rounds of
tiation by node i and § is the set of transaction depen-  extra messaging and increases the size of each message by
dencies known at nodé after this transaction. O(n) thus quite infeasible for real life deployments.
Our approach in this study is to prevent these patholog-

ical cases, rather than trying to detect them. Although we

granted. Message losses are common and networks are uUsls, crifice some concurrency and pay additional cost for the

ally multi-hop. -For mitigating first problem, we employ a = 5qrithm, as we show in SectiGh 6 we prevent inconsisten-
topology discovery phase where we identify reliable commu- .ias and still achieve substantial concurrency.

nication links. By using only reliable links we achieve lawe A verv si ; ;

; e ; y simple way to avoid multi-hop dependency loops
message loss. Having a collision fr(_ae MAC Iayer (@s In SS- s 15 forbid any dependencies between concurrent transac-
TDMA[L)) also greatly reduces the impact of this problem. ions  This is similar to having read-only locks on the read

The second problem on the other hand requires more delib-go¢ of R AWS transactions. Although this approach is safe, it

eration as we discyss in Sec'giﬁh 3. We thep describe ourreqyces the concurrency of the system. We call this method
approach to deal with the multi-hop networks in Secfibn 4. “locking” and use it as a baseline for our experiments.

3 Concurrency Control in Multi-Hop Net- 4 MOCCA: Multi-hop Optimistic Concur-
works N rency Control Algorithm
~ Multi-hop networks pose an additional problem for op- | order to conceptualize our method of multi-hop con-
timistic concurrency control as the cycles in dependencies cyrrency control, we introduce the concept otalor for
may not be limited to a single hop neighborhood. Central- each node. Theolor of a node is used in each of its RAWS
ized solutions do not suffer from this problem as all trans- transactions to limit concurrency. In addition to satisfyi
actions will be known by a central server. However this re- dependency requirements as explained in SeEfidn 2.1, we re-
quires all transactions to be aggregated at a central @tati qyjre all RAWS transactions with dependencies running at
and central server needs to send coordination messages back node to have same color. Now the question becomes how
to nodes to limit concurrency. Flooding all transactions to tg assign the nodes colors so that we both prevent multi-hop
whole network is another alternative but it has even hlgher dependency |OOpS and provide h|gh concurrency. More for-

would costO(n) communication instead @(1). as follows:

A tempting solution to this problem is piggy-backing ad-
ditional dependency information to all transactions. lis th
approach all initiation messages would also include thefset
known running transactions with all required dependeney in concurrency The concurrency limitations on the RAWS
formation. Even if we ignore the limitations of messagesize transactions should be minimal.
in radios, this method still can not capture many dependency For safety property, we depend on RAWS to detect con-
problems. flicts. If all the initiator nodes in a set of concurrent trans

safety All dependency loops occurring through execution of
RAWS transactions must be detectable.



actions are in single-hop with reliable communicationdéink  Algorithm 4 MOCCA

all dependency loops will be detected. This corresponds to 1: if neighbor modifiedhen

a clique topology in the graph of reliable links. In such sub- ».

graphs assigning different colors to reduce concurrency is
not required.

the number of distinct neighboring colors for each node. The
chance of cancellations caused by color constraints iserea
with the number of colors, which in turn decreases concur-
rency. 8

Unfortunately, minimal subcoloring problem is NP-complet

even for triangle-free planar graphs[7]. Instead of seagch  13:
for an optimal solution which would require exhaustive and 14:

possibly centralized computations, we opt for an incremen-

tal heuristic approach called MOCCA, Multi-hop Optimistic  15:
Concurrency Control Algorithm. 16:
MOCCA is anincrementalandself-stabilizingalgorithm 17:

for distributed subcoloring problem using RAWS transac-

tions. By termincrementalwe refer to the fact that MOCCA  18:
operations are a set of RAWS transactions which can be in-19:
terleaved to regular operations of RAWS. Moreover, any in- 20:

termediate state of MOCCA still satisfisafetyproperty, al- 21

needsU pdate- true

3: end if
. 4: if needsModificatiorthen
Theconcurrency property on the other hand is related to  s5:
6
7

run modification RAWS

color « chooseColof)/ update color
needsModification— falses no more modification is nec-
essary

. else ifneedsU pdatéhen

Satisfying both of these properties is closely related to g:
a graph theory problem, subcoloring. Subcoloring corre- 10:
sponds to an assignment of colors to a graph’s vertices wherei 1:
each color class induces a vertex disjoint union of cliques. 12:

run update RAWS

newColor— chooseColof)

if newColor#£ color then
needsModificatior— truei a better color is present, a
modification RAWS is required

else
needsModificatior— falser no better alternative exists,
so no modification is necessary

end if

if Ic|suspiciousc) then
needsU pdate— trues since there are undecided 2-hop
neighbors another update is needed

else
needsU pdate- false

end if

. else
lowing the application developer fine tune cost and benefit of 22:

return // stabilized so no more color operations necessary

optimization. This property also permits MOCCA execution 23: end if

without a setup phase. Self-stabilization on the other hand
provides robustness for MOCCA, where local errors can be
fixed after finite number of RAWS transactions.

MOCCA uses RAWS transactions to read color of each

den but some neighbors declare that color is suspicious then
the color is considered as suspicious. Otherwise the cslor i

of its neighbors. Two kinds of transactions are utilized for .qnsidered as safe. MOCCA initiator counts the number of

this purposeipdateand modification Updatetransactions

nodes in each safe color. Among the safe colors with high-

are read only transactions to discover whether there existSaet cardinalities a random one is chosen as next color. To

a better color for the nodéModificationsare initiated after

improve stabilization of the algorithm the current color is

updates to actually modify the color. The update transastio chosen if it has the highest cardinality. This functionalit

are introduced to address our observation that color of node;

is implemented irchooseColof) command. We summarize

actually needs to change relatively few times yet there are \yocca in Algorithmd.

many occasions that might lead to a change in color.

Nodes save the color of their neighbors after each update4.1 ~ Safety

to be utilized when answering to other nodes requests. In ad-

In this section we show MOCCA provides safety which

dition, whenever a neighbor starts a MOCCA modification, corresponds to consistent execution of transactions iti-mul

the commit time of this transaction is noted as last modi- hop domain. An inconsistency is a result of cyclic depen-
fication time of this neighbor. Moreover the color of this dency among concurrent transactions. We identify two dif-
node is marked unknown as modification might be changing ferent kind of cyclic dependencies: clique cyclic dependen

the color of node. The read response for update and mod-cies and non-clique cyclic dependencies. Clique cyclic de-
ify transactions contain color of the node and the status of pendencies are a set of transactions with cyclic dependency
the color. The status of a color can take three valdes: in which all nodes form a cligue in reliable communication
bidden suspiciousandsafe A color c is labeled forbidden  graph. When RAWS operates without message losses, clique
when there is a neighbor of the contributing node with color cyclic dependencies can be prevented by RAWS only. The
c which is not a neighbor of the initiator. A colaiis labeled last node to complete the cycle would detect a conflict with
suspicious when there is a neighbor of the contributing node its transaction since it would know all the other transatgio
not which is not a neighbor of the initiator whose color is in the potential cycle.
unknown. Color is deemed safe in all other cases. Non-clique cyclic dependencies on the other hand contain
Initiator node of MOCCA transaction combines all read nodes that are not neighbors. In this case, RAWS might not
responses from its neighbors to construct a list of safe col- be able to detect these cycles. MOCCA’s aim in safety is
ors. A color is considered as forbidden if any of the neigh- to prevent these non-clique cyclic dependencies. Assignin
bors declares that color forbidden. If a color is not forbid- different colors to a pair of nodes is used to forbid concur-



rent execution of dependent transactions on these nodes. Thnode ids. This process can be generalized to handle reboots
set of transactions with cyclic dependencies would be a di- with addition of a small bootstrap process which would let
rected subgraph of the reliable communication graph. So aseach node to discover colors of its neighbors before degidin
long as reliable communication graph does not contain any on its initial color. The node would in this case start with a

non-clique cycles composed of nodes from a single color

color different from all its neighbors.

(monochromatic), no non-clique dependency cycles can be4.2 Stabilization

generated through execution of RAWS transactions.
Enforcing non-cliqgue monochromatic cycle requirement
is difficult using single hop primitives so we use a slightly
stronger property:
Property 1: If there exists a monochromatic path be-
tween two nodegsandj, i and j must be neighbors.
Following lemma shows the relation 8foperty 1 with
our goal:
Lemma 1.1f Property 1 is satisfied on grap@, there are no
monochromatic, non-clique cycles@
PROOF Assume there is a non-clique monochromatic cy-
cle in the graphG = (V,E) that satisfies’roperty 1. Then
exists a pair nodes, j € V incident to this cycle where
(i,]) ¢ E. Sincei and | are on a monochromatic cycle there
is a monochromatic path betweiesnd j. HoweverProperty

Although safety of MOCCA ensures correct execution
of RAWS transactions in multi-hop environments, unless
MOCCA algorithm terminates the cost of MOCCA algo-
rithm can be prohibitive. In this section we show MOCCA
indeed self-stabilizes. We first define a progress indicator

F(t) for MOCCA:
c(vt)
2

wherec(v,t) is the number of nodes sharing color with node
v at timet. Using this indicator we can define an invariant
for MOCCA:

Invariant: F(t) > F(t — 1) for any serializable execution
of MOCCA.
PROOF Each execution of MOCCA changes color of at

F(t)

1 dictates there can be no such pair of nodes. We arrived tomost a single node. Lat denote the node which changes

a conclusion, hence the proof is completél

Note that the inverse of Lemmhal 1 is not correct.
Monochromatic trees can be formed to span the network
which would violateProperty 1 but satisfy the requirement
of preventing monochromatic, non-clique cycles.

Lemma 2.Given a graphs = (V, E) satisfyingProperty 1,
any serializable execution of MOCCA never violafe®p-
erty 1.

PrROOFE Since we only consider serializable executions of
MOCCA, we can order execution of MOCCA transactions
at each node. Le&E(G,t) be the coloring of grapks aftert
MOCCA executions, and;(t) be the color of nodee V at
that instant.

Assume MOCCA violate®roperty 1 after executiornT .
MOCCA only modifies color through RAWS transactions
and since RAWS transactions can only modify variables of
the initiator node, MOCCA can change only color of the run-
ning nodel €V soC(G, T —1) andC(G, T) can only differ
ati. Colorc of nodei can not be same sind¢&roperty 1 is
satisfied after executioh— 1 and violated after executidn
This impliesi with color c must be part of the newly formed
cycle. Moreoveri must have a one of the nodes in the cy-
cle not adjacent to all other nodes, as otheniAsaperty 1
would not be satisfied after executidn— 1. This means,
there is a path over nodes with colofrom nodei to a node
i & Nc(i) through a nodé € N¢(i). However color of node
i can only be updated if all neighbor nodes report caltw
be safe So nodek needs to report colar as safe. A color
cis reported safe if color of all nodés= N¢(k) is modified
before last update of nodeandNc(K)

Nc(i) =. So we arrive to a conclusion, hence the proof is
complete. [J

Lemmal2 establishe®roperty 1 is not violated by
MOCCA. This means as long as MOCCA is started from a
configuration of colors that satisRroperty 1, through exe-
cution of MOCCA safety would be maintained. In the simu-
lations we start with each node with a distinct color based on

its color at timet. We can rewrite- (t) as follows:
F(t)=F(t—1)—2c(v,t — 1)+ 2c(wt)

The factor of 2 comes from the contribution ofto the
c(v,t) values of other nodes in his cluster. MOCCA only
changes current color if it has higher cardinality then the
current color therc(vt) > c(v,t —1). We can rewrite this
asc(v,t) —c(v,t — 1) > 0, which implies:

F(t) Ft—1)+2(c(vt) —c(v,t —1))
F(t) F(t—1)

>

|

At this point we note thaF (t) is bounded from above
since the number of nodes is finite. This result does not
address update transactions in MOCCA which do not mod-
ify colors. Modifications have higher priority over updates
so modifications execute regardless of humber of updates.
When there are no valid modifications left, there are no more
color changes possible. Update transactions are initiated
only when there is a possibility of color change. So when
no more color changes are possible eventually no more up-
date transactions will be initiated. As shown in Algorithin 4
updates are initiated at a node under two conditions: follow
ing a neighbor’s modification or detection of a suspicious
color. As the modifications are completed, the first condi-
tion no longer applies and eventually all nodes stop updatin
Similarly suspicious colors are result of incomplete nbigh
color information in nodes. Following the end of modifica-
tions, updates will eventually ensure all the nodes willehav
up-to-date neighbor color information and all responsesfr
neighbors will either be forbidden or safe.

Although these results show MOCCA stabilizes to a solu-
tion we do not claim the global optimality of our solution. A
global solution of this problem even using centralized algo
rithms is NP-complete. However in next Sectidn 6 we show
that even this suboptimal solution provide significant perf
mance improvements.



5 Implementation Details ter initial response times. We also noted that first few itera
In order to investigate the feasibility of MOCCA we use tions of MOCCA algorithm correspond to the bulk of perfor-
the Prowler[[26] simulator. For performance reasons we usemance improvement and the gains diminish with more and
the Java implementation JProwler which offers same radio more iterations. We use a probabilistic approach to linet th
models with improved scalability. number of MOCCA iterations. MOCCA algorithm decides
High concurrency in transactions is one of the main chal- to iterate or process next data transaction probabilitica
lenges for implementation. Increased concurrency leads toThis probability is reduced by 20% after each MOCCA it-
competition for the medium among nodes and transactions.eration. With this interleaving scheme, MOCCA can still
Multi-hop networks further complicate this issue with hid- stabilize coloring with enough number of data transactions
den terminal and synchronization problems. We address thisbut when the amount of data transactions is small, the cost
problem through a cross-layer design where we enable ourof MOCCA transactions do not dominate the total cost of
protocol to control the MAC layer behavior for improved operation.
performance. RAWS queries the MAC layer for message 51 TDMA issues

schedule information which is then used for determining Our TDMA implementation is similar to SS-TDMA[14]

transaction durations. Determining an optimal transactio h ir of nod ith two hoo dist hare th
duration ensures that all read responses will be received be WN€€ NO pair o nodes with two nop distance share the same
TDMA slot. Moreover, we minimize the number of slots

f h it ti hile keeping the length of tran [ . : : ; X
ore the commit time, while keeping the length of transattio to improve medium utilization. TDMA is quite suitable for

minimum. . . ;
Another improvement we make over classic MAC design RAWS implementation as it has very low message loss rates.
is the introduction of message queue reordering. In our im- TfDMA also c_orresspondsr:o ‘:’I‘_B‘;’\‘;%all orde][ for rre]:ad (rjesponsbes
lementation, read response messages are given prioeity oy ©' & transaction. Since the  Slots of each node can be
P P g g b y known by their neighbors, the optimal transaction duraiton

new transaction initiations. This process improves thiheug X
put substantially as more transactions are able to complete £3SY 10 compute. The only drawback of TDMA model is the
requirement of time synchronization. For this purpose we

RAWS protocol can further modify message queue to com- rely on existence of reliable multi-hop time synchroniaati
i . This process allows exgloitin . )
bine read response messages. This pr WS exp ggorlthms such as FTSP[18].

the broadcast nature of messages to send read reply messagc"é1
to multiple initiators with a single broadcast. Our simidat 5.2 CSMA issues
results in Sectiohl6 show that even this simple optimization  cgMmA on the other hand does not require time synchro-
can have significant performance advantages. nization. This advantage is offset by the heavy traffic cduse
Reducing the amount of messages sent is crucial in bothy,y, RAWS. CSMA suffers from lack of coordination when
throughput and energy efficiency objectives. To reduce can-medium is flooded with packets. CSMA implementation
celed transactions, which waste communication as thetsesul 5156 needs to deal with ordering read response messages for
are discarded, RAWS intervenes with MAC operation via de- 4 transaction. We evenly distribute read responses toettans
ferred conflict detections in transaction initiations. ASa  {jon duration in CSMA to prevent collisions between read re-
action initiators execute conflict detection just before 1A  gyonses to same transaction. However as show in S&gtion 6,

layer sends the packet to radio. This deferred check allows cga still has large amount of message losses and canceled
a large portion of the conflicting transactions to be cantele {ansactions.

even before their initiation message is transmitted. Witk t ] ) )
optimization, traffic is reduced and concurrency is imptbve 5.3  Optimal Serial Execution
as conflicting transactions do not interfere with compatibl When clock synchronization is available, computing
transactions. transactions in a serial token passing scheme is a viakle alt
Throughput is usually inversely correlated with fairness, native. In this study we opted to compute the lower bound for
where optimizing throughput alone produces unfair utiliza this approach instead of actual implementation. Token-pass
tion of medium. In RAWS protocol however we need to have ing with a single token can be quite inefficient in multi-hop
a baseline fairness for optimal MOCCA performance. In ad- as it fails to utilize potential for concurrent transmigso
dition, most of the performance benefits of MOCCA/RAWS Thus, we opt for multiple tokens passing through network
come from increased concurrency. Approximating fairness for optimal serial execution. We devise minimum duration
leads to more concurrent transactions and better throughpu rounds where nodes with tokens are allowed to run one trans-
Our approach for granting fairness is simple and bestteffor action and then they pass their tokens to next set of nodes.
We introduce a random back off between transactions similar For assignment of rounds and nodes in each round we uti-
to CSMA back offs approach. Random back off prevents un- lize TDMA slot assignment. TDMA slot assignment makes
desired situations where a single node runs successiw tran sure there are no nodes in two-hop neighborhood sharing the
actions starving the rest of nodes. We trade off some of thesame slot. In optimal serial execution, we replace TDMA
throughput performance as there are potential gaps betweerslots with optimal serial execution rounds. Thus given a
transactions if a single node but we obtain better throughpu topology and TDMA slot assignment, the behavior of se-
via increased concurrency. rial execution can be predicted. Transaction completitesra
Another optimization we implemented for MOCCA isthe and simulation durations for serial execution is computed i
interleaving scheme. Since MOCCA algorithm is incremen- this manner taking read response delay in to account where
tal, we can control the aggressiveness of optimizationdorb  applicable.
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5.4 Transaction Generation Models o 055 5 e

The set of transactions required for different application &

can be substantially different. Since addressing all possi o pra eoa
bilities is infeasible we employ certain methods for gener- N ha——L AT -
ating transactions. Our initial approach is generatingsra b\ .55%20 093 05— 053 015
actions with uniform random read set size and members of o0 N
the read set again chosen randomly among neighbors. Max n RN ok
imum read set size in this method is determined to be the ad .
number of neighbors of the node. This method generates @57 ® ®0 %g, N/
both very small and very large transactions corresponding t ey IVZ ¥
a wide range of different tasks. ks O NG
° ols2 @97

A similar approach was taken inl[5], where the transac- e« 7 4.
tion read sets were generated by uniform probabilitiesirThe
method adds each variable to read set with 0.5 probability, /"=~
which leads to more average sized transactions and less ver ~ ““#% " e o
small or very large transactions.

Keeping the transaction size constant is another option. .
This method also leads to a further optimization in optimal
serial execution since the size of transactions are known be
forehand.

Finally we use a data aggregation task to model trans-
action generation. In this model transaction read sets are _. . .
only allowed to contain nodes with lower ids then the ini- Figure 2. A sample topology used in simulations. Nodes
tiator. This process leads to an acyclic dependency graph fo &€ colored according to MOCCA algorithm.  Circles
transactions. This transaction model is quite similar ® th Show location of nodes and edges show the reliable com-
transaction sets required for false positive eliminatiod a munication links.
distributed decision tree implementations.

5.5 Simulation Setup Our implementation keeps a detailed log of transactions

Our simulation uses a square shaped region with varying executed for detecting inconsistencies. We also visualize
size and number of nodes. Figliie 2 show one sample topol-these data for a better perspective on execution of algurith
ogy with 100 nodes in a 10@x 100m region. We used a Figure[3 shows one snapshot from execution of MOCCA
uniform random distribution to generate topologies in this With CSMA model. _
study. Large circle in Figurigl 2, corresponds to approximate ~ Unless otherwise noted we repeated experiments for each
reliable communication radius which varies due to simula- configuration 20 times with different random number gen-
tion. erator seeds. For clarity we report the median value for

We used the Gaussian interference model in Jprow|er'metrics. We also include costs associated with MOCCA in

The interference in this simulation has a static and a dyaami OUr eéxperiments. MOCCA transactions are executed con-
component. Static component reflects multi-path effeatis an currently with the data tasks and the total duration and mes-
reflections in a link and does not change after the topology is S29€ communication figures include extra messaging caused
constructed. Dynamic component on the other hand models™Y MOCCA algorithm as well. We do not consider RAWS
the transient effects in channel quality common in low-powe @nsactions used for MOCCA algorithm as data transactions
radios. While deciding on success of reception, interfezenc SiNce they are intended to improve performance rather than
of transmissions are accumulated to a total noise stremgth a  ctual work. So the transactions used for tasks are same
compared against received signal strength. for all methods but MOCCA experiments include additional
A separate neighborhood detection run is made before theWork for improving coloring.

experiments to identify reliable communication links. The We believe V|s_ual|zat|0n IS an important tool for d'§C°V'
neighbor detection phase is composed of two sub—phases.ery’ |mplen_1entat|on and analy5|_s of algorithms, especiall
mplex highly concurrent environments such as WSANSs.

First each node makes 10 transmissions and each node keeq%o . ; ; :
track of the number of receptions from each transmitter. In N our eXperience, the effort spent on _meanmgful visualiza
the second sub-phase, nodes declare their list of receptior{'on. of execution is well deserved. For instance, we managed
counts for transmitters. A link between a pair of nodes is '© fiX & rare non-determinism in JProwler implementation,
which stemmed from events at exactly same simulation time,

identified as reliable if all transmissions in both direnso ina the visual tati imilar to th h -
are received successfully. This phase is run in a very high l;?éﬂ?e@e visual representations similar to the one shown in

granularity TDMA manner where only a single node is al- ’ )
lowed to transmit in whole network. During RAWS exe- 6 Simulation Results

cution multiple concurrent transactions are present, whic This section presents our results on safety, scalabihty, a
leads to increased interference and message losses even jperformance of RAWS/MOCCA system in multi-hop net-
these reliable links. works. We start with safety as it is the core competency for
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Figure 4. Number of inconsistent transactions versus the

Figure 3. A sample execution from simulation using
CSMA. x axis is time andy axis contains a row for each
node. For clarity only 20 nodes are displayed. Filled
boxes are used for RAWS transactions initiated by cor-
responding node with size proportional to the transac-
tion duration. Empty boxes correspond to nodes send-
ing a read response with arrows pointing to the target
transaction. Dark (green) boxes are successful transac-
tions whereas light (pink) boxes are failed transactions.
A cross on the transaction distinguishes failure of a trans-
action due to a conflict.

our system. We then investigate the throughput and scalabil
ity of our system. Finally, we consider the impact of trans-
action set generation approaches and the processing delay i
the transaction on the performance.

6.1 Safety

We first investigate the safety properties. In this part we
compare same set of tasks executed concurrently, under thre
different configurations:

1. No concurrency control
2. RAWS without MOCCA

3. RAWS and MOCCA
Ouir first metric for safety is the number of inconsistent
transactions. A set of transactions are considered insonsi

Percentage of Consistent Runs

number of transactions per node.

RAWS alone causes inconsistencies in all runs. Introduction
of MOCCA on the other hand prevents this from happening
as we do not observe any inconsistencies with MOCCA.

100 T T T T T
80 I _
€0 - MOCCA/RAWS
RAWS Only
40 L no Concurrency Control ---*--- |
20 _
0 sk —_
0 20 40 60 80 100

Transaction Count

Figure 5. Percentage of consistent runs versus number of
transactions per node.

Through the rest of experiments with a total of 2400 runs,

tent when they are executed concurrently but their reseisdo  We only had a single inconsistency while using MOCCA
not correspond to any serial execution, hence breaking se-With CSMA. Total consistency in presence of byzantine mes-
rializability. Figure[2 summarizes the results we obtained Sage losses is impossible but we argue that our scheme re-

from our simulations. RAWS and MOCCA working together

MOCCA is still reasonably consistent, the percentage of in- 6.2 Throughput

consistencies is less than 1% compared to no concurrency
control which leads to almost 60% inconsistency.

duces the probability to much more acceptable ranges espe-
makes the system totally consistent, whereas RAWS without ¢ially with TDMA.

In this subsection we investigate throughput performance
of RAWS/MOCCA. High throughput improves effectiveness

At this point we note that even a single inconsistent trans- of not only heavy traffic but bursty traffic in the network.
action is sufficient to cause remainder to be eventually in- With high throughput more traffic can be handled by the
consistent as well. Inconsistent transactions would @brru  primitive reducing the need for using more simple primi-
state of a node, which in turn can corrupt states of neigh- tives. Multi-media networks with cameras and microphones
boring nodes through other transactions. We thus investi- generate large amounts of data to be transferred resulting
gate the ratio of runs that contain no inconsistencies to all in heavy traffic. Bursty traffic patterns are more common

runs. Figuré b demonstrates this perspective with inangasi

in WSAN tasks since sustained high throughput is difficult

number of transactions. Even with 60 transactions per nodedue to battery limitations. Applications such as intruder d



tection and false positive elimination, cause in such traffi
patterns. These tasks have high spatio-temporal cooelati
among sensor detections which translates to high comwelati
in communication. By increasing throughput we also im-
prove the system’s responsiveness to bursty traffic.

Figure[® summarizes a single run of all protocols in a
reference configuration with 100 nodes in a &30 100m
region and 400 transactions per node. This figure depicts
change of completed transactions per minute through the run
With TDMA, MOCCA initially has a lower rate than Lock-
ing but this difference is quickly compensated. CSMA on
the other hand shows much less difference between Locking
and MOCCA.

1400 . . . . .
1200 /" 17N

1000 ”
800

600

Transactions Completed Per Minute

400 |- MOCCA TDMA ) 1
MOCCA CSMA
Locking TDMA --------
200 I Locking CSMA .
Serial
O | | 1
0 10 20 30 40 50 60

Time (minutes)
Figure 6. Transactions completed per minute versus time
from single representative runs using same transaction
set.

The main reason behind the drastic difference between
CSMA and TDMA is the ratio of canceled transactions to
the total number of started transactions. Fidgure 7 shows the
extent of this problem where CSMA has significantly higher
cancel rates especially for transactions with large retad se

08 T T T T
07 F o -
0.6 [ s
o)
g 051 MOCCA TDMA ——— |
= 04l MOCCA CSMA i
3 : Locking TDMA --------
S 03 F Locking CSMA i
O
0.2 s
0.1 . .
0 5 10 15 20 25
Transaction Size
Figure 7. Ratio of canceled transactions to started trans-

actions, grouped by number of nodes in read set. For this
figure a topology with 100 nodes is used with 1000 trans-
actions for each node.

The increased cancel rate also inversely affects the total

duration of a single transaction. Since failed transastion
are repeated until success, successive failures reduie-per

mance. We observe the total duration distribution of RAWS
transactions with TDMA (Figuriel 8) has much lower variance
than RAWS transactions with CSMA (Figurk 9).
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Figure 8. Distribution of completion times for individual
RAWS transactions in MOCCA with TDMA.
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Figure 9. Distribution of completion times for individual
RAWS transactions in MOCCA with CSMA.

These results point out to the limitation of CSMA for col-
lision free communication in multi-hop environment. Heavy
traffic from RAWS transactions also amplify this problem.

6.3 Scalability

An important question about the performance of MOCCA
is the scalability of the method for larger networks. Number
of nodes in the network is a natural parameter to consider for
scalability. Figurd_T0 shows our results for this parameter
This result is expected since increased number of nodes also
increase number of single hop neighborhoods, which in turn
increases the possible concurrency in the network.

Density of the nodes on the other hand has more profound
consequences. Figurelll summarizes the effect of density
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Figure 10. Total Simulation time versus the number of Figure 13. Comparison of corresponding MOCCA and
nodes under constant node density dd.01 nodes/n?. Serial executions with respect to simulation time.

with varying number of transactions. Increased density cor Figure[14 shows results of this experiment. This figure ex-
responds to increased transaction sizes and increaseckchan poses a rather curious phenomenon where the average trans-
of conflicts and cancels. This effects MOCCA and Locking actions completed with CSMA is much higher than TDMA
similarly increasing the required time and messages reduir when the density is low. CSMA allows transactions to be
for completing all tasks. We observe the problems in CSMA started at a faster rate as nodes can start transactions any
more clearly in this perspective as serial execution is much time instead of waiting for their TDMA slot. However as
better especially when the density of the nodes are large.  we have shown in Figuid 9 there is a large variance in trans-
Even with the additional cost of MOCCA transactions, action durations in CSMA. Even when CSMA can execute
MOCCA achieves performance of Locking even with 200 more transactions per minute, for the total completion time
transactions per node. With increased number of nodesmetric, the last transaction to be completed is the determin
the difference becomes more significant. Figurk 12 showsing factor.
this result comparing total simulation durations of indival

runs corresponding to same transaction set in a scatter plot = ,5qq : : : : :
= E) MOCCA TDMA —e—
S R MOCCA CSMA
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0
6 1 2 3 4 5 6 7 Figure 14. Average number of transactions completed
MOCCA per minute for different methods. Each node is allowed
Figure 12. Comparison of corresponding MOCCA and to run as many transactions as possible and after 2 hours
Locking with respect to simulation time. of operation the average is calculated.

A similar comparison in Figur€ 13 between MOCCA 6.4 Transaction Set Generation
and optimal serial execution shows even larger gap between Different computation types can lead to different set of
two methods. Variance in these figures stem from both the transactions. In this section we investigate such scemario
randomness of the topology and the different densities em-Uniform Random transaction sets in Figlrd 15 is our ref-
ployed. erence model. Coin flipping model used by authors_in [5]
For a better understanding of throughput we ran methodsprovides very similar results to our model as shown in Fig-
with unlimited number of transactions for a fixed duration. ure[16.
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Figure 11. Effect of number of transactions and density of ndes on task completion time and number of messages sent.
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Figure 15. Performance of Uniform Random tasks with Figure 16. Performance of TRANSACT tasks with re-
respect to simulation time with 400 transactions per spect to simulation time with 400 transactions per node.
node.

serial algorithm and shows a scenario where serial exatutio

Data aggregation problem has a slanted distribution of Might be faster.
transaction set sizes with many transactions with smatl rea 6.5 |mpact of Processing Delay

sets. This benefits MOCCA and Locking similarly as both g this point we assumed that the read operations on
methods can utilize variable sized transactions. This iode i, contributing nodes can be performed instantaneously.

also has many compatible transactions because aggregatiopioever, when the data is stored in external devices or when
creates a directed acyclic graph structure for transadn i heeds to be obtained on demand (such as in a sensing sce-
pendencies. Hence Figuirel 17 shows significant differencenario) a delay is induced. This delay can be well tolerated
betwgen concurrent methods and serial execution even Wlthby concurrent paradigms as the delay in multiple transastio
the disadvantages of CSMA. can be overlapped. Additionally, while a transaction istwai

A constant size for transactions reduces the benefits ofing for a read response another transaction might utilize th
concurrency as more and more transactions become conflictmedium. Our experiments, shown in Figliré 19, support this
ing. In addition, the serial protocol can be further optiedz ~ argument, indicating up to 10 times performance difference
by reducing superframe size. Figlird 18 uses such optimizedbetween the serial execution and concurrent methods.
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Figure 17. Performance of aggregation tasks with respect
to simulation time with 400 transactions per node.

Constant Generation Model

Read Response Delay (ms)
Figure 19. The effect of read response delay on total
simulation duration under constant node density 0f0.01
nodes/m? with 400 transactions per node.

6 MOCCA TDMA ' ' ' ' cate that, when time synchronization is available, MOCCA
5 L MOCCA CSMA i with TDMA can outperform optimal serial execution in both
Locking TDMA ---%--- execution time and number of message transmissions. Even
4 - Locking CSMA o . though we do not provide energy use comparisons, this result
Serial points out to potential energy efficiency benefits of concur-
ST ] rency, especially with time synchronization.
2 | 4 In absence of time synchronization, MOCCA can still
function with CSMA albeit with performance penalties. It
1r 7 should be noted that, without global time synchronization,
, , , , , , serial execution of transactions in multi-hop networks idou

be extremely challenging, if at all possible. We would also
like to note that our simulation results considered a setup
with only single variable per node. Increased number of vari
ables per node improves concurrency further and boosts the
performance benefits of MOCCA.

The implementation of RAWS/MOCCA framework on
the mote platforms is our next step. There are other im-
plementations of optimistic concurrency control in wisse
7 Concluding Remarks sensor networks[5], which further supports the feasiboit

In this study we proposed a single hop primitive Read- this approach. In addition to a TDMA-based implemen-
All-Write-Self to simplify programming of WSNs and tation, we also plan to investigate more elaborate CSMA
WSANSs. Our RAWS framework utilizes an optimistic con- implementation that avoids message losses through smarter
currency control scheme and guarantees serializability fo Scheduling of messages. Knowledge about running transac-
single-hop networks. We also identified challenges in imple tions and potential read response messages can be leveraged
menting our RAWS primitive in a multi-hop environment, 0 improve the transaction success rates when using a CSMA
and showed that a set of transactions spanning multi-hopMAC layer.
neighborhoods may violate serializability. To address thi  Finally transactional abstraction can be extended to sens-
problem, we proposed a constraint based solution, whiching and actuation mechanisms in the node operations as well.
prevents such multi-hop inconsistency chains. In order to This extension would provide a uniform interface for pro-
improve the multi-hop performance of RAWS, we reduced gramming WSAN applications where many race conditions
the concurrency constraint problem to a graph subcoloring can be eliminated. A uniform interface would also simplify
problem. We provided an incremental, self-stabilizing al- validation as all computing would be reduced to set of trans-
gorithm for graph subcoloring named Multi-hop Optimistic actions.

Concurrency Control Algorithm (MOCCA).

We implemented MOCCA in JProwler simulator with 8 References
TDMA and CSMA. We compared the performance of [1] M. Arumugam and S. S. Kulkarni. Self-stabilizing
MOCCA using these two MAC layers with an optimal se- deterministic  TDMA for sensor networks. In
rial execution and a locking based protocol. Our results ind G. Chakraborty, editor,ICDCIT, volume 3816 of

0.0075 0.01 0.0125 0.015 0.0175

Density (nodes/mz)

0.02

Figure 18. Performance of constant sized random tasks
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