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Abstract— The insider threat against database management (former) employees or system administrators might abuse th

systems is a very dangerous and common security problem. already existing privilegeto conductmasquerading data

Authorized users may compromise database security by abusj harvesting or simply sabotageattacks [8]
legitimate prjvileges to masquerade as another user or to gher S h f I insid o id K .
data for malicious purposes. omewhat more formally, an Insiaer (II’]SI e attac er) IS

This paper proposes a direction to solve this problem: profihg  typically viewed as someone with legitimate privileges mpe
user database access patterns by looking at exactly what theser  ating with malicious intent. The RAND workshop devoted to
accesses. The approach is data-centric in the sense that aye jnsjder threats [9] defined an insider as “someone with agces

expression syntax is considered irrelevant for discriminéing user o\ iiaqe or knowledge of information systems and senvices
intent — only the resulting data matters in this regard. Seveal

questions arise — what do we mean by “profiling”? How do we @and the insider threat problem as “malevolent (or possibly

implement this idea and how effective is the solution? inadvertent) actions by an already trusted person withsacite
We answer these two questions by outlining a method to model sensitive information and information systems.” For eximnp

a users’ database access with a multidimensional vector. &ts- 5ttacks such asasqueradingand privilege abuserepresent

tical learning algorithms are then trained and tested on these _ . s . .
vectors, using real data from a Graduate Admission database well-known security threats in financial, corporate andtary

Several performance issues are also addressed. Experimaht domains; attackers mabuse legitimate privilege® conduct
results indicate that the technique is very effective, acaate, Shoopingdata-harvesting5] and other actions with malicious

and is promising in complementing existing database secuyi intent (e.g., espionage). Detecting insider attacks bgigpeg
solutions. explicit rules or policies is a moot point — an insider is afga
definedrelative to a set of policies.

Consequently, we believe that the most effective method to

Ensuring the security and privacy of data assets is a crucigdal with the insider threat problem is to statistically fileo
and very difficult problem in our modern networked worldnormal users’ (computing) behaviors and raise a flag when a
Relational database management systems (RDBMS) [1] is {igxr deviates from his/her routines. Intuitively, for exden a
fundamental means of data organization, storage and alccesgood statistical profiler should be able to detect non-#tgal
most organizations, services, and applications. Nafurtile  sapotage attacks or quick data harvesting attacks bedaeise t
prevalence of RDBMS also led to the prevalence of securiggmputing footprints of those actions should be signifigant
threats against database management systems. statistically different from the day-to-day activities.

An intruder from the outside, for example, may be able The yser profiling idea for insider threat detection in arti
to gain unauthorized access to data by trying to execyigy and anomalous detection in general is certainly not new
well-crafted queries against a back-end database of a V\(%Ee, e.g., [10]). In the context of an RDBMS (or any problem

application. This class of so-callesiQL injectionattacks [2] requiring statistical profiling), the novelty lay in the avess
are well-known and well-documented, yet still very dan@sro i two critical questions:

[3]. They can be mitigated by adopting suitable safegudads, , i
example, by adopting defensive programming techniques afl) What is a user profile? and ,
by using SQLpreparestatements [4]. (2) which stausncal/machme—Iearmng techmques ande®

An insider attackagainst a database management system, to be adopteq so that the profiles gmectically useful
however, is much more difficult to detect, and potentiallycimu for the detection problem?
more dangerous [5]-[7]. According to the most recent SecretBy “useful” we mean some large class of insider attacks
Service/CERT/Microsoft E-Crime report, insider attacks¢ can be detected. By “practical” we mean the method can
stitute 34% of all surveyed attacks (outsiders constitit®,3 be deployed and perform effectively in a real RDBMS. The
and the remaining 29% of surveyed attacks have unknowavelty and contributions of this paper come from answering
sources). For example, insiders to an organization suchthe above two questions.

I. INTRODUCTION



Several research projects (e.g., [11]-[16]) have led to thg viewing the data as a universal-relation [17]. Each query
development of intrusion detection (ID) and mitigation -sygesult (a set of tuples) will be represented by a compacbvect
tems that specifically aim to protect databases from attacksose dimension is fixed, regardless of how large the query’s
Our work in this paper will focus on analyzing user behaviaesult set is. More details will be given in Section IV.
specifically in terms of SQL queries to a relational database Intuitively, this approach has pros and cons. On the plus
Other behavioral features that should be useful in insiteat side, for an insider to evade our system, he would likely
detection (e.qg., location of the attacker, informatiorretation have to generate queries with the same (or statisticalljfaim
between consecutive queries, and temporal features suchremsilt set as the result sets he would have gotten anyhow with
time between queries, duration of session etc.) are outls&le his legitimate queries using his existing privileges, g
scope of this paper, and will certainly be considered in arfut the attempt at circumvention inconsequential. In the synta
work. based approach, queries with similar syntax can give differ

Perhaps the most natural user “profile” is the set of SQlesults and the attacker may be able to craft a “good-lodking
queries a user daily issue to the database, or some repnalicious query to access data he’s not supposed to access.
sentative set of queries representing the past. For exampleOn the minus side, a query has to be executefbrethe
[16] relied on the SQL-expression syntax of queries to codecision can be made on whether or not it is malicious. What if
struct user profiles. This approach has the advantage thahalicious query asks for hundreds of gigabytes of datal? Wil
the query processing of the intrusion/insider detectiosteay the query have to be executed, and will our detection engine
is computationally light: a new query is analyzed and ruhave to process this humongous “result set” before detgctin
through some statistical model (e.g., clustering) and onillye anomaly? These legitimate concerns are within the scope
gueries that are accepted by the detection system are tbémuestion (2) above. We will show that this performance-
actually executed in the database engine. However, as Wle shacuracy tradeoff is not at all as bad as it seems at first
later demonstrate in this paper, this syntax-centric visw glance. We will experimentally show that a representative
ineffective and error-prone for database anomaly detedtio constant number of result tuples per query are sufficient
general, and for database insider threat detection, incp&t. for the detection engine to perform well, especially when
For example, two queries may differ widely in syntax anthe right statistical features and distance function (leetw
yet produce the same “normal” (i.e., good) output. Thus, rormal and abnormal result sets) are chosen. Furthermore,
syntax-based detection engine might generate false yesitithese (constant number of) result tuples can be computed
on these queries. Conversely, two queries may be very simidficiently by leveraging the pipelined query execution mlod
in syntax and yet generate completely different resultssicey of commercial RDBMSs. Feature selection and the distance
the syntax-based engine to generate false negatives. function choice are among the key contributions of this pape

Our conviction is that the best way to distinguish normal The rest of this paper is organized as follows. Section Il
vs. abnormal (or good vs. malicious) access patterns isolo lasurveys background and related works. Section 11l dematestr
directly atwhatthe user is trying to access — the result of theechnically the limitations of the syntax-based approacbi;-
query itself — instead ofiow he expresses it, i.e. the SQLvating the data-centric approach introduced in Sectiortiat-
expressions. Two syntactically different queries with iEim tion V gives a brief taxonomy of query anomalies facilitatin
result tuples should be considered the same (whether gabd experiments presented in Section VI. We further discuss
or malicious) by the threat detection engine; conversely, t our solution, its implications, and future research dimett in
syntactically similar queries should be considered diffier Section VII.
if they result in different tuple sets. An insider who tries
to peek at a part of the database which he often does not
access will be caught. The same holds for an attacker usingseveral intrusion detection systems (IDS) with direct or in
a compromised account as the attacker’s data access pattirect focus on databases have been presented in thedierat
will likely be different from the real account owner’s acsesGeneric approaches and architectural frameworks for datab
pattern. Data browsing for harvesting purposes would aéso lDS have been proposed in [18] and [19]. In [20], the real-
caught if browsing is not part of his daily routines. time properties of data are utilized for intrusion detettin

The conviction is the core of our answer to question (Bpplications such as real-time stock trading. Kreugel kt. a
above; our approach is data-centric rather than syntatticen [21] and Valeur et. al. [14] present schemes for the detectio
user behavior is modeled on the basis of the data generatedbyanomalies such as SQL-injection attacks in web-based
executing their queries as opposed to the syntax of the S@pplications. We believe that detection of sql-injectidtaek
expressions. We shall show that the data-centric appraachsia specific kind of database query anomaly that is detegted b
superior in terms of detecting anomalous user access patteour approach in a straightforward manner as we will explain
Technically, however, it is still not quite clear what a usein this paper.
profile is. A typical database may consist of millions of data Data dependency among transactions is used to aid anomaly
tuples, it is certainly impractical and in fact may not even bdetection in [13] — the central idea here is that database
useful to explicitly keep track of all data tuple sets that atransactions have data access correlations that can be used
the results of “normal” queries. Briefly, we solve this pratl for intrusion detection at the transaction and user tas&l$ev

Il. BACKGROUND AND RELATED WORK



Similarly, in [22], the concept of dependency between datab Consequently, statistical profiles based on SQL expressiom
attributes is used to generate rules based on which madicidinited in their ability to recognize users’ intents. Foraexple,
transactions are identified. The DEMIDS system [11] detedissyntax-based approach may model a query with a frequency
intrusions by building profiles of users based on their wagki or characteristic vector, each of whose coordinates counts
scopes which consist of feature/value pairs representieq t the number of occurrences (or marks the presence) of some
activity. These features are typically based on syntdctideeywords (e.g.sel ect, from etc.) or mathematical
analysis of the queries. A system to detect database attacksrators [16].

by comparison with a set of known legitimate database trans-Consider the following query:

actions is the focus of [12]. SQL statements are summariged a )

regular expressions which are considered to be ‘fingeprinPELECT p. product _nane, p. product _id

for legitimate transactions — this again, is based on aisafits FROM PRODUCT p

the syntactical level. In [23], an approach to intrusioredéon VWHERE p. cost == 100;

in web databases is proposed that is based on constructing finy gyntactical analysis of this query and subsequent feature
gerprints of all sgl statements that an application can G¢ee oy traction (e.g., [16]) might result in the following feats

A binary vector with length equal to the number of fingerpsint,, query data representation — SQL Comman&ELECT
is used to build session profiles and aid in anomaly detectiafp|act Clause RelationsPRODUCT Select Clause Attributes
This approach introduces assumptions such as restriabions_ productname, producid, Where Clause Relation PROD-

the number of distinct queries possible, and may complem@rtt;T’ Where Clause Attributes -cost Now consider the
our approach in cases where the assumptions are valid.5|fsnate query:

[24], database transactions are represented by directgahgr

describing the execution paths (select, insert, delet¢ anel SELECT p. product _nane, p. product_id
used for malicious data access detection. This approactotarFROM PRCDUCT p

handle adhoc queries (as the authors themselves state) WHERE p. cost ! = 100;

works at the coarse-grained transaction level as opposed Ki’his uery has the same data representation (based on
the fine-grained query level. Database session identificasi query . P .
ntax-analysis) as the previous one; however, it is easy to

the focus of [25] — queries within a session are considered ¥ .
be related to each other, and an information theoretic metﬁ.ee that Fhe data tuples accessed in the o cases are very
; ' S . fferent (in fact, they are the complement of each other).
(entropy) is used to separate sessions; however, wholaaequerI e ) i .
are used as the basic unit for n-gram-statistical modeling o Similarly, consider the first query rewritten as follows:
sessio_ns. _A muItiagen_t based approach_ to database imrusig ecT p. product _name, p. product i d
detection is presente(_j in [26]; relatively S|_n_1ple_ metrmsh;as FROM PRODUCT p
access fr_equ_ency, object requests_and ut|I|zat|0n andiérec \\yERg p.cost == 100
denials/violations are used to audit user behavior. AND p. product _name is not null;
Prior approaches in the literature that have the most simila
ity to ours are [15] and [16]. The solution for database arlgma
detection proposed in [15] is similar in the use of statidtic This query has a different syntax (two columns and a
measurements; however the focus of the approach is maifihjunction operator in the WHERE clause), but produces the
on detecting anomalies in database modification (engerty Same result tuples as the first (under the reasonable assampt
rather than queries. The query anomaly detection compon#t all products in the database have a valid product name).
is mentioned only in passing and only a limited set of featur&ost syntax-based anomaly detection schemes are likely to
(e.g., session duration, number of tuples affected) arsidon flag this query as an anomaly with respect to the first.
ered. The work presented recently in [16] has the same dveralSyntax analysis, even if very detailed (taking into account
detection goals as our work here — detection of anomaliesditferences in operators, e.g., ‘=="and ‘!=" in the exangple
database access by means of user queries. However, it takegtwve) is complicated given the richness of the SQL lan-
approach that is based on analyzing the syntax of sql strirgigage, and involves determinirguery equivalencewhich
for anomaly detection, unlike our approach of analyzing tHe difficult to perform correctly. In fact, query containnten
results of query execution. A primary focus on this pap@&nd equivalence is NP-complete for conjunctive queries and
will be on exposing the limitations of syntax based detecticundecidable for queries involving negation [27]. Instedd o
schemes; the approach in [16] will be used in this paper agr@deling queries in terms of syntactical constructs (e.g.,
benchmark for evaluating the performance of our approachselect whereclauses), we propose to bypass the complexities
and intricacies of syntax analysis and model queries ingerm
HI. L IMITATIONS OF SYNTAX -CENTRIC APPROACH of data access, i.e., the actual database tuples that araadt
This section presents examples to demonstrate the limi&s a result of query execution.
tions of the syntax-centric approach, showing that two syn- The examples above give the reader the insight into why
tactically similar queries may generate vastly differeaguits, syntax-based approaches may not perform well. We shall
and two syntactically distinct queries may give similarulfes demonstrate this limitation experimentally in a later sect



and also experimentally compare it with our data-centras projection selectionandjoin. Identification of the schema
approach. for the database queried allows us to represent each role)tup
in the execution result of a query as a tuple in the universal
relation corresponding to the database. A data-centricyque
The main premise of the data-centric approach to tmepresentation format called &Vector(statistics/summary
database insider threat detection problem is: the actual deector) is described in the following subsection.
returned after query execution is the most important discri
inator of user intent. In a logical sense, we care about tﬁe
semanticsof the queries, not their syntax. This notion is An S-Vector is a multivariate vector composed of real-
intuitive because a malicious insider typically tries taqaice, Vvalued features, each representing a statistical measuatem
refine and enhance his/her knowledge about different détds defined by the columns of the universal relation corre-
points and their relationships — this act likely involvegada Sponding to a database. Each attribute of the universaiaela
access patterns that may be atypical for his/her job functi¢ontributes a number of features to the S-Vector:
The deviation from normal access patterns should occur ine Numeric Attributes: Each numeric attribute contributes
both the data harvesting type, the masquerading type of the measurementdin (minimum value)Max (maximum
attacks, and also the compromised account case (where an value),Mean Medianand Standard deviation

IV. USERPROFILES INDATA-CENTRIC APPROACH

S-Vectors

intruder gains access to an insider’s account). « Non-Numeric Attributes: The statistics computation does
To develop a suitable data-centric query representation not make sense for non-numeric attributes suclohas
format, we begin by considering théniversal Relation[17]: andvarchar. For categorical attributes, one option is to

expand a valued attribute intd: binary-valued numeric
attributes (value 1 if the category is represented in the set
A relational database [1] may consist of multiple relations  of result tuples and 0 otherwise) and compute statistics

A. Database Schema and the Universal Relation

with attributes and relationships specified by multiptemary on it as usual. However, the expansion of categorical
keyandforeign keyconstraints. One way of visualizing such a  attributes may result in aB-vectorthat has far too many
database is as a single relation, called theversal Relation dimensions — we compromise by replacing each categor-

[17], incorporating the attribute information from all the ical attribute with two numeric dimensions representing
relations in the database. Our goal is to be able to keep track thetotal countof values, as well as the numberdistinct
of user access patterns to data tuples in the database. valuesfor this attribute in the query result.

A straightforward approach to profiling user data accessThe S-Vector format for a database is determined by its
might proceed as follows — for a universal relation with schema; the value of the S-Vector for a query is determined
attributes, each data tuple is viewed as a point in semepy executing the query and computing the relevant attribute
dimensional space; a user may be profiled by the set of sughtistics based on the set of result tuples and the re$iéhsa.
points he/she typically accesses. Each query is thus a $gble | shows the S-Vector format for a database consisting
of points in this space. However, in practice, the number ef a single relation. To illustrate how an S-Vector value for

attributesn in the universal relation and eSpeCially the numb%{ query is generated' consider the fo||owing query executed
of data points accessed by users are prohibitively largs; thgainst the database in Table I:

straightforward method is unlikely to be scalable. Morapve

it is not clear how a new point set representing the new queigg\z/lcr p. cost

can be classified as normal/abnormal using this method. PRODUCT p
Our approach is as follows: instead of keeping track SfHERE p.type =

individual data tuples, we compute a statistical “summary”

of the query’s result tuples. The summary for a query is For this query, the result schema consists of the single
represented by a vector of fixed dimension regardless of heslumn Product.cost and statistics computed on the result
large the query’s result tuple set is. This way, past querigfples are used to populate tfFoduct.Min Product.Max
(i.e. normal queries) from a user can be intuitively thougiroduct.Mean Product.StdDevand Product.Medianfeatures

of as a “cluster” in some high dimensional space. We hayg the S-Vector format for the database — the result is the
to emphasize that clustering is only one of several stedikti S-\ector representation of this query.

learning technique we will test for this problem. The term
clustering is used here to give the reader an intuitive sehse V- A TAXONOMY OF QUERY ANOMALIES FROM THE

"abc’;

the model. When a new query comes, if it “belongs” to the DATA-CENTRIC VIEW
user’s cluster, it will be classified as normal, and abnormalin order to evaluate the effectiveness and accuracy of a
otherwise. threat detection engine, a taxonomy of query anomalies is

Relations consist of various kinds of numeric and noruseful to aid in reasoning about potential solutions. Sqbset
numeric attributes (columns) and data tuples (rows). Tlexperiments can be analyzed in the light of this taxonomy and
execution of a query results in the return of a subset of date performance of detection schemes with respect to specifi
tuples from the database as a result of database operaticims snomalies can be evaluated.



TABLE |

STATISTICS VECTOR FORMAT FOR SAMPLEDATABASE SCHEMA

Database Schema

S-Vector Features

Product.cost(numeric

Relation | Attribute
Product.type(varchar)| Product.type.ncount
Product.type.ndistinc
Product Product.cost.Min

Product.cost.Max

B. Type 2 — Similar Result Schema/Different Result Tuples

The result schema is similar for two queries in this case, but
the data tuples are (significantly) different. We considen t
sub-cases within this category — one is hopefully distished
by most good syntax-centric schemes, the other is usually
undetected by most syntax modeling schemes. As an example,
consider the base query:

Product.cost.Mean
Product.cost.StdDev
Product.cost.Median

SELECT =

FROM PRODUCT p

VWHERE p. cost

We will classify query anomalies based on how “far” the

1000;

anomalous query is from a normal query. From a data centricexecution of this query results in the schemaype, p.cost

view point, two queries are represented by the two quegnd data corresponding to the WHERE conditjpnost =
execution results, each of which consists of the resultrsehe1000. We consider two variations of this query:

(the columns) and the result tuples (the rows). If the result
schemas are (very) different, the two queries are differént
the result schemas are similar, then we need to look into how
different the result tuples are. On this basis we classifgrgu
anomalies.

A. Type 1 — Different Result Schema/Different Result Tuples

This is a typical case since queries that differ in the
result schema have distinct SQL expressions (especially in
the SELECT clause) and should be readily detected by both
syntax-centric and data-centric schemes (since resulesup
differ). From the insider threat perspective, data haimgst
and masquerading can both result in this type of anomaly. As
an example, consider the two queries to the database degcrib °
in Table I:

Query 1: SELECT p. cost
FROM PRODUCT p
WHERE p.type = 'abc’;

Query 2: SELECT p.type
FROM PRODUCT p
WHERE p. cost < 1000;

Distinguishing these kinds of queries has received the most
attention in the literature (e.g., [16]) especially in thantext
of masquerade detection and Role Based Access Control
(RBAC), where different user roles are associated withediff
ent authorizations and privilege levels (to execute comdaan
queries etc.) [28]. An attempt by one user-role to execute
a query associated with another role indicates anomalous
behavior and a possible attempt at masquerade.

Type 2(a) (Distinct Syntax) -Consider the query:
SELECT *
FROM PRODUCT p
WHERE p. cost < 1000 AND

p.type = ‘“abc’;
This query has the same result schema as the previous
one with a possibly different result tuple-set (matching
the additional constraint of the product type); however,
the SQL expression syntax is distinctly different, and
the WHERE clause has an additional attribute that is
checked §.type) compared to the previous query. Good
syntax based analysis schemes should be able to detect
this variation.
Type 2(b) (Similar Syntax) Now consider another query:
SELECT =+
FROM PRODUCT p
where p.cost < 1000 AND

p. cost > 1000;
This query has the same result schema as the previous
two; however the result tuples are the complement of
that for the first query. Syntax analysis of the SQL
expression would show the same attribute in the WHERE
clause as the first; most syntax-centric modeling schemes
(e.g., [16]) would have an identical representation fos thi
query as the first. The query can be rewritten in multiple
ways (e.g.p.cost!= 1000) with various combinations of
constants, arithmetic and logical operators; even a very
detailed syntax-based modeling scheme may be hard-
pressed to consider all variations. However, data-centric
modeling schemes are expected to readily identify this
variation since the statistical characteristics of theiltss
are likely to be vastly different from those of the first.

From the insider threat perspective, data harvesting arsd ma

Syntax-based anomaly detection schemes have been shgwerading can both result in this type of anomaly. Another
to perform well for this case and it is our contention (andxample of a well-known attack class that may fall in this
indeed we show later) that data-centric schemes should atstegory isSQL-injectionsince a typical attack is one that
be equally effective — different result schema necessariljjects input causing condition checks to be bypassedtiagul

implies different result tuples, and therefore differaatistical
characteristics for the results.

in the output of all tuples — e.g., a successful exploit of the
first example above may lead to the execution of



SELECT * FROM PRODUCT p of privacy preserving data mining and query auditing (
WHERE 1; [29], [30]). Syntax-centric schemes would blindly disal-
low this, but as we have shown, this may be an extreme
step that may restrict many legitimate queries. The attack
A query whose execution results in a (statistically) simila  here arises from information refinement through temporal
schema and result tupIeS as another is considered to beusimil interaction between a user and a database and not from
from a data-centric viewpoint. Clearly, if the queries have g property of the query itself (i.e., its syntax or result
the same syntax, then their resulting schemas and tuples are data). Exploiting temporal features from a data-centric
the same and thewgre identical from both the data-centric viewpoint is an important future research direction of
and syntax-centric view. The interesting case arises when a ours. It should be noted, however, that it is difficult for an
query producing the same result as another differs in syAtax  attacker to intentionally exploit this condition, since he
Syntax—based detection schemes are designed to disakme th is unable to predict the nature of query Output to ensure
queries or automatically flag them as anomalous. However, that result statistics are unchanged from a normal query.

the question of whether such a query is truly an anomaly or |n any case, addressing this type of attacks is beyond the
not requires further analysis. Two distinct sub-cases m&y b scope of this paper.

considered depending on query semantics: The different types of query anomalies are summarized in
« Type 3(a) (Similar Semantics) In this case, denying Table 2. In the next section, we present our experimentsitest

the query is an unnecessary restriction that syntax-@entsi prototype of a data-centric insider detection system and

schemes impose on the user. As an example, consider \@fidate our approach for detecting types 1 and 2 anomalies.

C. Type 3 — Similar Result Schema/Similar Result Tuples:

query: Type 3 is outside the scope of this paper.

SELECT p.type

FROM PRODUCT p VI. EXPERIMENTAL VALIDATION

where p.cost < 1000; We begin this section with a description of a prototype of
and the alternate query: a data-centric anomaly detection system callEgtatProfiler
SELECT p. type We will also ela_borate on th_e framework of the experimental
FROM PRODUCT p setup, and detail our validation steps.

VWHERE p. cost < 1000 AND p.type IN A. Test Setup

(SELECT g.type FROM PM a); The testing environment consists of a web application
Here, the results of the queries are the same, and so eGraduate Student AdmissionSradVotethat relies on a

the query semantics and the underlying user intent — Bystqresql [31] database at the back-end. There are a number
retrieve product types that cost less than a certain amoygit, ysers of the system that interact with the database by
but the queries have very different SQL expression sYReans of queries — this interaction happens primarily véa th

tax. Data-centric approaches would correctly permit thgap, appiication. The users fall into several user categorie
second variation that may be denied by syntax-centriﬁduding Chair, Faculty and Staft

modeling sche_mes. _ The database schema consists of 20 relations with multiple
« Type 3(b) (Different Semanticsy Even though tWwo (gyer 20 for some tables) numeric and non-numeric attribute
queries expose exactly the same tuples, in some casgsy 39 multi-level views (i.e., the views refer to base re-
an attacker may learn additional information because pions as well as to other views). The training and testing
their different semantics. As an example, consider thigyaset consists of tens of thousands of user queries at ar
query in relation to the first above: labeled both by individual user-name as well as by user-role

SELECT p. type These views are significantly complex, possessing multiple
FROM PRODUCT p subqueries, complex joins and computed attributes G,
WHERE t r ue; averageof the values in a numerical field).

Now assume, for the sake of illustration, that the attacker Our systemQStatProfileris positioned so that the interac-
is attempting to see all product types (data harvestingijpn channel between the application and the databaséilidevis

If the above query returns more (or different tuples) witki.e., it can observe the queries to the database as welleas th
respect to the first example, then the data-centric approagkery execution results returned to the application). Aerigs
should, conceptually detect this. But if the result tuplegre submitted to the database and result tuples are refuheed
are exactly the same, this would (as expected) be permDD system simultaneously computes query statistics an&the
ted by the data-centric approach. However, the attackégctor for the query. The anomaly detection engine is flexibl
has now gained the additional information (based on hismd can accommodate a variety of machine learning/clusteri
results from the first query above), that all product typesgorithms — we elaborate on different algorithms and arlpma
in the database cost less than 1000, and has refined désection goals in the following sub-section. The highelev
knowledge regarding some entity. This kind of successigetup is depicted in Figure 1 (configured to perform rolesdas
knowledge accrual has received much interest in the arenasquerade detection) — the solid figures represent system



TABLE Il

QUERY ANOMALIES — DATA-CENTRICVIEW

Anomaly Cases
(Result Schema/Tuples)

Types

Detected by

Syntax-Centric?

Detected by
Data-Centric?

Attack Models

Type 1. Diff. Schema/Diff. Results Yes Yes Masquerade
Type 2. Similar Schema/Diff.Results (a) Distinct Syntax Yes Yes SQL-injection
(b) Similar Syntax No Yes Data-harvesting

Type 3. Similar Schema/Similar Resul

ts(a) Diff. Syntax/Similar Semantics

5 Yes (false positive)

Yes (allowed)

(b) Diff. Syntax/Diff. Semantics

Yes

No

Data harvesting

components, the broken lines indicate the flow of infornraticoperates as a passive component between the application and
among these components. We elaborate further on varidhe database server, observing queries and the corresgondi
aspects of this system below. results without disrupting normal functioning. The dateda

Query Filtering: An important task for database intrusiordoes not experience any additional load due to the anomaly
detection is to construct accurate profiles for users/rioles- detection system; the computational cost of calculatirsglte
der to perform anomaly detection effectively. For this meg, statistics falls on a different host that runs the ID system
it is necessary to overlook queries that are generated ranyy (QStatProfiler).
specific user, but by the interface of the web applicationgth Secondly, and as alluded to earlier, the data-centric @gpro
these are common for all users). For example, the applitatioeeds to see some data, necessitating some performance
may issue a query to the database to obtain the currentiyeacppenalty if we compare it to the syntax-centric approach on
list of users, or the time-line for a particular activity,caeo a malicious query that the syntax-centric approach is able
on — these queries may sometimes be generated as partoofletect. However, as we shall see, the execution of one
application startup. The set of these queries is well-knawnpinelined round in the RDBMS is sufficient for the data-
priori, since they may be embedded in the application codentric engine to perform well. The extra burden put on the
and can be overlooked for the purpose of user profiling. berver is minimal. In general, we propose to utilize okly
our case, we maintain a list affl tags that indicate commontuples from the result set to build the corresponding Serect
application queries — queries generated by these pages Bwe variations are considered for S-Vector approximatiébn o
classified ag-ramework Queriedy QStatProfiler a query in the online (testing) phase:

Query Parsing and Unfolding: This component is con- Top- tuples: In this case, only the top (initial}-tuples in
cerned with obtaining the mapping between the schemathg& result set are considered to approximate the entirdt resu
the result set and the overall schema of the database. Bleé Statistics computed from these tuples are used to @ener
syntax of a user query may not refer directly to elements ef tithe S-Vectorrepresentation of the query.
base database schema (i.e., base relations and theiut@s)ib  Random+# tuples: £ number of tuples are chosen at random
References may be made to views that might refer to otifeom the complete result set and considered for computation
views; the use of aliases and in-line subquery definitioms caf the statistics needed for the S-Vector representatibis T
complicate the task of schema mappirg@StatProfileruses approach is expected to produce better accuracy as compared
a query parsing component that is tailored to Bustgresql to the topk approach as it is not likely to be sensitive to
SQL syntax. Query parse trees are constructed which are tispecific orderings of the result tuples by the database i&his
analyzed to determine the subset of the database relatighs especially important if the SQL query contains ‘ORDER BY’
attributes that are present in the result tuples. The oudputclauses). Fortunately, we shall show that our particular efa
this phase is thus a set of relations and attributes thatidesc picking the distance function seemsnot be very sensitive
the result tuples. to result set ordering.

: . L In the next subsection, we consider the validation of the
B. Performance Considerations — S-Vector Approximation data- . B . .
ata-centric approach from two angles — detecting anomalie

Our approach relies on actual execution of SQL queries afht fall into Type 1 and Type 2 in table II. The two cases are
analysis of results to enable anomaly detection. This may leconsidered separately.

to concerns regarding the performance penalty of the approa o )

especially with regard to database performance overhidas.C- Validation — Type | Anomalies

address these concerns in this subsection. The typical case of query anomaly detection involves de-
First, we argue that the approach does not impose significéedting instances of Type 1. Although we claim conceptually

additional burden to the database server. In most applicatitimat the data-centric approach should prove effective, awe h

environments (e.g., web database applications), execatio to confirm this intuition with real experiments. We consider

database queries is part of typical application functioor Fthe specific case of role-based masquerade detection assthe t

example, a user might submit queries through a web form; thetting — where specific queries are associated with uses rol

gueries are executed at a remote database server and the regnd execution of a query by a user belonging to another group

are made available to the application. Our system (Figure dgnstitutes an anomaly. We will benchmark this aspect of
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Fig. 1. Design of intrusion detection system for detecting insigiéacks against databases

TABLE Il
DETECTIONPERFORMANCE— TYPE 1 ANOMALIES (ROLE MASQUERADE)

Roles Algorithm | C M F SV SV SV SV SV SV SV
quip. | quip. | quip. | @) 1200 | R(20) | 1(10) | R@0) | I(5 R(5)
Chair Vs Faculty| N-Bayes | 81.67% | 85.33% | 75% | 85% | 85% | 82.67% | 78.33% | 77% | 81.67% | 90%
Dec. Tree | 88% | 87.67% | 87.67% | 96.33% | 88.3% | 88.3 % | 89% | 88.67% | 88.67% | 88.67%
SVM 833% | 81% | 87.67% | 82.33% | 74.67% | 77% | 71.33% | 75.67% | 68% | 74.33%
Chair Vs Staff | N-Bayes | 58% | 935% | 95.5% | 60.5% | 50% | 60.5% | 62% | 57.5% | 62.5% | 60.5%
Dec. Tree | 75% | 88% | 96% | 95.5% | 92.5% | 96% | 96% | 93% | 95% | 92.5%
SVM 515% | 845% | O6% | 80% | 84% | 855% | 785% | 81.5% | 855% | 82%
Faculty Vs Staff | N-Bayes | 84.33% | 90.67% | 93% | 58.67% | 61.3% | 60.3% | 60.3% | 59.3% | 63% | 60%
Dec. Tree | 90% | 93.67% | 95.67% | 89.3% | 92.3% | 91.67% | 92% | 93.67% | 91.33% | 91.67%
SVM 87% [ 93% | 95.67% | 69.67% | 71.67%| 71% | 69.33% | 72% | 68.67% | 72%

performance by comparison with a syntax-centric schemte tha clauses, a binary value is used to explicitly indicate the
has been successfully applied to the detection of roleebase presence or absence of each attribute in a relation in the
anomalies [16]. Our goal here is to show that our data-aentri  corresponding clauses.

scheme performs at least as well as syntax-centric sSChemegyg; procedure: The available dataset of queries is la-

for Type 1 anomalies. beled by the rolesStaff Faculty, and Chair, in addition to
Syntax-Centric Format:For the sake of completeness, weramework for the common application-generated queries,
present a brief summary of the syntax-centric data formafg described above. The set of queries is randomized and
presented in [16]. Three representations are consideretseparated intdrain and Testdatasets of 1000 and 300 queries
Crude (C-quiplet) Medium (M-quiplet)and Fine (F-quiplet) respectively. For benchmarking performance, four quetg da
recording varying levels of detail. representations are tested — dB#Vector (dimensionality —

« C-quiplet: This is acoarse-grainedrepresentation con- -638) and the syntax-centrie-quiplet (dimensionality — 5),

sisting of the SQL-command, count of projected relationg/,l'quipkat (dimensionality _73_) and-quiplet (dimensional- )
count of projected attributes, count of selected relatioty __1187) d_ata representatlon_s from [16]. Three machine
and a count of selected attributes. learning algorithms are tested with each of these data fisrma

« M-quiplet: Thismedium-grainedormat records the SQL ~ Naive Bayes Classifier. (NBC_), Decisiqn Tree_CIqssifier
command, a binary vector of relations included in thgnd Support Vector Machines. Since role information is typ-

projection clause, an integer vector denoting the numbSA!Y. :;]wanable In a gmscgjueradz dettlacgolndegwronmera, th
of projected attributes from each relation, a binary vect@\lgor!t ms are trained and tested on labele ata_(supelryls
of relations included in the selection clause, and Aﬁarnmg). These well-known approaches are describedprie

integer vector counting the number of selected attributese Naive Bayes Classifier (NBCThe NBC [32] is a well-
from each relation. known technique that has proven to be effective in many
« F-quiplet: This is a fine-grained query representation. It applications such as text classification. The classifier is
differs from the M-quiplet in that instead of a count of based ornBayes Theorenand operates under thdaxi-
attributes in each relation for the selection and projectio = mum Aposteriori ProbabilityMAP) decision rule — given



an instance to be classified, the classifier decides on the Decision-Tree algorithm is found to work best with the
correct class if it is more probable than any other clasS-Vector representation.
If the attributes of this instance afe , as, as, ...a,) and L )
C is the set of classes, the most probable clags,p is D- validation — Type 2 Anomalies
given by: The focus here is on detecting queries are similar in syntax,
Cyap = arg maze,ec P(cjlar,az,as, ..., an) but differ in output data (data-values, output volume, athpo
By Bayes Theorerand by the conditional independencédhis is a significant query anomaly since, in a typical atfack
attribute that NBC makes with respect to attributes, thiwinor variation of a legitimate query can output a large vodu
reduces to choosing'y;4p as of data to the attacker. This may go undetected and may be
Cyuap = arg maze,ec P(cj); P(aslcy) exploited for the purpose of data-harvesting. In othercétta
The probabilities (including conditional probabilitiem)e variations, the volume of the output may be typical, but the
estimated based on the training data. Further details data values may be sensitive. These kinds of attacks fall int
NBC are available in [32]. Type 2(b) in Table II. Since Type 2(a) anomalies are detected
« Decision Trees:Decision tree algorithms are well knowneasily by syntax analysis, this is similar to Type 1 for tegti
machine learning techniques that are popular in dagarposes, and will not be considered separately.
mining applications. A decision tree is a structured plan Test Procedure:Since a suitable dataset of Type 2(b)
to test attributes in order to eventually arrive at a clasgomalies was not readily available to us for testing pugpos
prediction — this structure is similar to a tree (hence thgince these may be considered possibly malicious or uhusua
name). The attributes to be tested are in the order iof typical domains), we manually create a test-set. The set
the information gain[32] that they possess — at eacltonsisted of variations of normal queries (i.e., queriestadly
step of tree construction, the attribute with the highesecuted by users in our dataset) that were designed to dypas
information gain (among those not yet part of the treelyntax-centric schemes; this ‘anomaly set’ has approxiypat
is added to the decision tree. The tree gets constructbe same distribution of distinct queries as the originahset.
during the training phase as is dependent on the attribUtee query variations are easy to generate by varying artibme
characteristics of training instances. We utilize the J.481d logical operators and constants. As an example, canside
decision tree algorithm [33] in our experiments. the query:
o Support Ve_gtor_MachinesSuppo_rt vector machines Persr| ECT + EROM vAppl i cant s
form classification by go.nstructmg hyperplanes for Varueee reviewStat uslD = ° &’
ous classgs and a deC|s_|on boundary for c;Iass sepa_rgtmD reviewStatusiD = ' b’ :
The decision boundary is constructed during the training
phase and is used during the online (testing) phase toA suitable Type 2(b) variation is as follows:
classify new instances. The tramlng_ m;tances that “.e%kLECT « FROM vAppl i cant s
the hyperplanes that lead to the definition of the decisi . L
. : ERE reviewStatuslD = "a
boundary (i.e., those that would change the SO|UtIOI’I@ reviewStatusiD = ' b’ -
they were omitted) are callezslipport vectorsDetails on ’
Support Vector machines are available in [34]. It must be noted that the queries considered here are differ-
ent from masquerade attacks (since they are not repreisentat
The results for the binary classifiers for masquerade def any authorized user of the system) and are typically not
tection are depicted in Table Ill (the best performance favailable for training a detection system. Hence, supedvis
each format with respect to separating user roles is shoanomaly detection approaches are not suitable here. We con-
in boldface). In the table, k) and R&) denote the Initial- sider two detection techniques that detect potential atiema
k and Randontk S-Vector approximations. We note that thédased on a single class aformal queries — aCluster-
performance of the S-Vector based detection is comparaBlased Outlier Detectioomethod, and another approach we
to those of the syntax-based schemes (even better in scra ATTRIB-DEVIATIONwhich is found to perform better.
cases). We also note that the Tomand Randon¥ S-Vector Cluster-based Outlier DetectionThe set of queries en-
approximations perform competently. We note that for theountered during the training phase can be considered as
Faculty Vs Staffcase, the syntax centrie-quiplet performs points in anm dimensional vectorr{ is the dimensionality
better than the S-Vector (95.67% to 89%). Our analysis showfkthe S-vector) space. A clustering technique (ekgmeans
that the Faculty and Staff roles are not well separated inclustering) can be used to discover clusters represerntititas
terms of data access (this also explains the poor perforenansers (e.g., belonging to the same role) if role-infornmatio
of the Naive-Bayes and SVM algorithms for the S-Vector ifls missing; however, in our case role data is available and
this case) which may be responsible for this effect. It imse¢his information can be used to partition the data into role-
that the Topk and Randonik approximations give slightly clusters (i.e., théaculty and Staff clusters). Additionally, the
better results than the full S-Vector — this may be due to theining data can be considered to be free from ‘attack’ éaf)b
effects of overfitting for this particular dataset. Howevier queries; if necessary, the training data can be made robust t
general, the techniques show comparable performance, dmel effects of bad queries or noise by pruning 5-10% of the



TABLE IV
TYPE2(B) ANOMALIES — CLUSTERBASED OUTLIER DETECTION

Format S-V S-V S-v S-V S-v S-V S-v
(all) 1(20) | R(20) | 1(10) | R(10) | I(5) R(5)

Detection | 83.87% | 12% | 67.7% | 6.4% | 45.1% | 6.4% | 35.4%

TABLE V
TyPE2(B) ANOMALY DETECTION— ATTRIB-DEVIATION

Format SV [SV [SV [SV [SV [SV [SV
@l | 120) | R@O) | 120) | RQO) | I(5) | R(5)

Detection 90.3% | 90.3% | 90.3% | 90.3% | 90.3% | 90.3% | 90.3%
Min. No. Anom.
Dimensions 5 4 5 4 5 4 5

outliers. Training data consisting efqueries (vectors) can bemisleading indicators of anomalies because of these of
represented by the x m matrix dimensionality For example, it is possible to have a highly
anomalous value along a single dimension, which may not
translate to a significant Euclidean cluster-distance (doet
Anxm = versgd. As a final validation of the poor performance of clus-
tering, we tested the original problem of masquerade detect

o _ (Chair Vs Faculty using single-class outlier detection — the
For each user cluster, we select a point in the Euclideg@ tormance was below 10%.

space that is representative of the entire cluster, catled . .
. . We develop an alternate technique for anomaly detection
cluster centroid A cluster centroid may be chosen so as t : : . L
S . . at can deal with the shortcomings of clustering. This &clola
minimize the sum of the squared Euclidean distances of the . =" " .
cluster points: on an insight into the nature of query anomalies and how the

. correspondings-Vectorsare affected.
Centroid = 23" | x; p ¢

For a test S-Vector, the distances (using the EuclideanATTRIB-DEVIATION: Consider, for example, that a user
distance metric) from the cluster centroids are computdgsues an anomalous query with a different statistic for the
the query is flagged as an outlier if the vector distance $&@me attribute in the result schema as a normal query. In
greater than a specified threshold from any user. In our ca8H! representation, this difference shows up in one or more
we specify the threshold as 3 times the standard deviatiddepending on whether the attributedategoricor numeriq
this is the outlier specification typically utilized for amoal dimensions of the S-Vector. Hence, monitoring for anonsalie
population. A typical performance result with two user thus ©N Per-dimensiorbasis is a promising approach. Further, if

(Chair and Faculty) and corresponding anomalous query sé query generates unusual output for more than one attribute
is shown in Table IV. this is likely to reflect in anomalous values for several $tue

Results with role-cluster based outlier detection providéimensions; thus, the number of anomalous dimensions éor th
some interesting insights. While detection rate for the S3-Vector is a parameter that can be used for ranking potentia
Vector(all results) is reasonable (83.87%), it is seenrtlts query anomalies (i.e., queries with more anomalous S-Yecto
with the Top# results-approximation suffers significantly. Orflimensions rank high as likely candidates for possiblecktia
analysis, we find that many of the user queries make extensWg utilize this approach for testing the custom-developed
use of the SQLORDER-BY clause. Understandably, thisahomaly set — normaChair and Faculty queries are used to
results in a skewed representation of the overall resulsts Compute the mean values of S-Vector attributes; three times
in the topk tuples. This is ameliorated to some extent by thi@e standard-deviations again used as an anomaly separator.
Randomé variation (e.g., for randont = 20, the detection The results are summarized in Table V (the third row indigate
rate improves to 67.7%); however, there is still a markéfe minimum number of anomalous dimensions for any query
decline in performance indicating that the clustering sobe in the test-set that is found to be anomalous).
is sensitive to the approximation schemes and is affectedAgain, the results reveal some interesting insights. While
negatively by them. Further analysis into the clusteringgads detection performance for the S-Vector (all results) inveo
that this may perhaps not be the perfect scheme for anomatyy compared to the clustering approach (90.3% compared to
detection. Although anomalies with significant variatians 83.87%), we find that the attribute-deviation based scheme
multiple dimensions are easily detected by clustering ¢as fis remarkably resilient to the approximation schemes (both
many of our examples), this may not be true in the genefBdp-k as well as Random). The approximation schemes
case. Firstly, distances in high-dimensional space may perform as well as the full vector representation, but thp-To
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k performs unexpectedly well even with queries generatinmfolding recursively replaces references to a view in angue
specific ordering of results. expression with its corresponding view definition. For assla
Based on our analysis, we offer the following explanatiomf queries larger than SPJ queries on base relations and,view
First, note that a single anomalous attribute in the resuit cit is not clear if the base schema can be determined. For
responds to variations in multiple dimensions of the S-dect example, union queries can map two different attributes in
each of which represents a statistical measurement. Also thase relations into a single one in the query result, as the
extent of the anomaly may vary between result attributésllowing example shows:
(e.g., some attributes may have more atypical values).&Vhj
a selective ordering (e.g., by SQRRDER-BYclauses) may gELECT g-nanme, g.gpa FROM GRADS g
offer a skewed view of overall result statistics, tA@ TRIB- UNI CN )
DEVIATIONtechnique operates on a per-attribute basis andslgLECT u.name, u.gpa FROM UGRADS u;
thus still able to identify anomalies. Secondly, many geeri  In this case, there is no dimension in the S-vector to
have more than one anomalous attribute; hence selectiee-oréhccommodate the first attribute of the query result. The Same
ing may mask anomalies in some attributes, but not in othetue for computed attributes in results of complex (aggtiega
Thirdly, the selective ordering may not affect all statiati group-by) queries. To accommodate such cases, we plan to
measurements of a single attribute equally (e.g., it magcaff investigate data provenance techniques [36] and revise the
Max, but notMedian In our tests, we notice that while thedefinition and the use of the S-vector accordingly.
detection performance of both the Tépand the Random- Databases:The framework proposed in this paper assumes
k schemes remain the same, the ranking of query anomalieat the underlying databasestatic, i.e., there are no updates.
and the associated number of anomalous dimensions vAfthough this assumption is true or adequate for a certaisl
(typically fewer number of anomaly dimensions for Thp- of databases (e.g., in applications such as census regQrtin
as expected); this is shown in the last row of Table V. we plan to extend our work tdynamicdatabases. The first
As a final validation of this detector, we test the problerohallenge in this case is to determine if and when updates
of masquerade detection foClgair Vs Faculty (using the shift the boundary between normal and abnormal queries with
classes alternately as ‘normal’). The detection perfommanrespect to the initial database state. If the databaseniresta
with Chair (normal) was 94.7% and that witRaculty(norma)) is updated significantly, then our training sets and classifi
was 97.5%, slightly better than even the ML algorithms ihecome obsolete. Two directions we plan to investigate are:
Table III. (a) detect when a re-training of the system is needed, and (b)
We believe that the good performance of the Topp- whether detecting abnormal activity using stable versiohs
proximation with this detection technique has severaltwakc the database is effective for periods between re-training.
implications. First, it indicates that a fast online anoynal Activity Context: In our approach, the context of a user’s
detector can perform well by considering just a few initiahctivity is a set of query results generated in the past by the
output tuples. Randomized sampling of query results magme user or the group in which she belongs. When a user
not be feasible in all cases, especially for queries geimgratgenerates a new query result, then its S-vector is compared
hundreds or thousands of output tuples (e.g., due to perfto-the S-vectors representing the query results in the jdéest.
mance constraints), but our results here indicate thatracgu plan to investigate richer activity contexts and examirgrth
may not have to be sacrificed in the process of giving wgffectiveness in detecting sophisticated attacks. Suokegts
random sampling. Further, we also believe that the S-Vectwoight include statistics of a user’s session with the dagapa
representation scheme and attribute-deviation based apomemporal patterns of the query results generated by theimser
detection algorithm are quite resilient to attacks desigtte the past (large results during tax season, many resultagluri
mislead or bypass detection — we argue that it is very difficihe holiday season) and so on.
for an attacker to craft queries so that multiple statitica Performance: In cases where user queries return a signif-
measurements are controlled — a theoretical result may beigantly large number of results, computing statistics aber
interesting research problem. entire query result for anomaly detection might be unaccept
able from a performance standpoint. The foppproximation
proposed in Section VI improves performance without sacri-
In this section we discuss some overall aspects of oficing accuracy. One potential drawback of this approach is
solution, their practical implications and identify keyaj® that the queries in the training set might sort the resulta by
for future research. different attribute or in different order (ascending, d=sting)
Queries: In order to characterize query results using Shan an otherwise normal user query, thus leading to false
Vectors, we need to express the schema of each query repobitives. A possible solution to this problem is to choose
in terms of the attributes of the base relatiobhage schenja one attribute of each base relation as the default order by
For select-project-join (SPJ) queries on base relatioms, fattribute. Then, for every query in the training set add a
base schema is easily determined. When SPJ queries adasignatedORDER BY clause that orders the result by the
also expressed on top of views, then we employed the vielosen attribute of the first base relation (alphabetiraibed
unfolding technique [35] to determine the base schema. Viéw the query. When a user query is submitted, the system

VIl. CONCLUDING REMARKS



submits an additional query with trdesignatedRDER BY [19]
clause and uses this query result for detection.

Although random-k does not outperform top-k in our ex-
periments, we expect random-k to perform consistently for[zo]
wider range of datasets and queries. Of course, a problem
that arises then is how to sample a query result witho 4]
computing the complete result, given that RDBMSs follow
the pipelined query execution model. For this hard proble
we plan to leverage prior work on both SPJ queries [37], [3
and queries for data analytics in the area of approximateyque
answering [39]-[41]. (23]

In conclusion, the techniques that we have presented and
analyzed in this paper show significant potential as pralktig24]
solutions for anomaly detection and insider threat mitayat
in database systems. Some open research issues still remaig,
we aim to develop and present efficient and practical salstio
to these in future work.

2]
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