
A Data-Centric Approach to Insider Attack
Detection in Database Systems

Sunu Mathew#1, Michalis Petropoulos#2, Hung Ngo#3, Shambhu Upadhyaya#4

#Department of Computer Science and Engineering, University at Buffalo
Buffalo, NY 14260, USA

1smathew2@buffalo.edu
2mpetropo@buffalo.edu
3hungngo@buffalo.edu
4shambhu@buffalo.edu

Abstract— The insider threat against database management
systems is a very dangerous and common security problem.
Authorized users may compromise database security by abusing
legitimate privileges to masquerade as another user or to gather
data for malicious purposes.

This paper proposes a direction to solve this problem: profiling
user database access patterns by looking at exactly what theuser
accesses. The approach is data-centric in the sense that query
expression syntax is considered irrelevant for discriminating user
intent – only the resulting data matters in this regard. Several
questions arise – what do we mean by “profiling”? How do we
implement this idea and how effective is the solution?

We answer these two questions by outlining a method to model
a users’ database access with a multidimensional vector. Statis-
tical learning algorithms are then trained and tested on these
vectors, using real data from a Graduate Admission database.
Several performance issues are also addressed. Experimental
results indicate that the technique is very effective, accurate,
and is promising in complementing existing database security
solutions.

I. I NTRODUCTION

Ensuring the security and privacy of data assets is a crucial
and very difficult problem in our modern networked world.
Relational database management systems (RDBMS) [1] is the
fundamental means of data organization, storage and accessin
most organizations, services, and applications. Naturally, the
prevalence of RDBMS also led to the prevalence of security
threats against database management systems.

An intruder from the outside, for example, may be able
to gain unauthorized access to data by trying to execute
well-crafted queries against a back-end database of a Web
application. This class of so-calledSQL injectionattacks [2]
are well-known and well-documented, yet still very dangerous
[3]. They can be mitigated by adopting suitable safeguards,for
example, by adopting defensive programming techniques and
by using SQLpreparestatements [4].

An insider attackagainst a database management system,
however, is much more difficult to detect, and potentially much
more dangerous [5]–[7]. According to the most recent Secret
Service/CERT/Microsoft E-Crime report, insider attacks con-
stitute 34% of all surveyed attacks (outsiders constitute 37%,
and the remaining 29% of surveyed attacks have unknown
sources). For example, insiders to an organization such as

(former) employees or system administrators might abuse their
already existing privilegesto conduct masquerading, data
harvesting, or simply sabotageattacks [8].

Somewhat more formally, an insider (inside attacker) is
typically viewed as someone with legitimate privileges oper-
ating with malicious intent. The RAND workshop devoted to
insider threats [9] defined an insider as “someone with access,
privilege or knowledge of information systems and services,”
and the insider threat problem as “malevolent (or possibly
inadvertent) actions by an already trusted person with access to
sensitive information and information systems.” For example,
attacks such asmasqueradingand privilege abuserepresent
well-known security threats in financial, corporate and military
domains; attackers mayabuse legitimate privilegesto conduct
snooping, data-harvesting[5] and other actions with malicious
intent (e.g., espionage). Detecting insider attacks by specifying
explicit rules or policies is a moot point – an insider is always
definedrelative to a set of policies.

Consequently, we believe that the most effective method to
deal with the insider threat problem is to statistically profile
normal users’ (computing) behaviors and raise a flag when a
user deviates from his/her routines. Intuitively, for example, a
good statistical profiler should be able to detect non-stealthy
sabotage attacks or quick data harvesting attacks because the
computing footprints of those actions should be significantly
statistically different from the day-to-day activities.

The user profiling idea for insider threat detection in partic-
ular and anomalous detection in general is certainly not new
(see, e.g., [10]). In the context of an RDBMS (or any problem
requiring statistical profiling), the novelty lay in the answers
to two critical questions:

(1) what is a user profile? and
(2) which statistical/machine-learning techniques and models

to be adopted so that the profiles arepractically useful
for the detection problem?

By “useful” we mean some large class of insider attacks
can be detected. By “practical” we mean the method can
be deployed and perform effectively in a real RDBMS. The
novelty and contributions of this paper come from answering
the above two questions.



Several research projects (e.g., [11]–[16]) have led to the
development of intrusion detection (ID) and mitigation sys-
tems that specifically aim to protect databases from attacks.
Our work in this paper will focus on analyzing user behavior
specifically in terms of SQL queries to a relational database.
Other behavioral features that should be useful in insider threat
detection (e.g., location of the attacker, information correlation
between consecutive queries, and temporal features such as
time between queries, duration of session etc.) are outsidethe
scope of this paper, and will certainly be considered in a future
work.

Perhaps the most natural user “profile” is the set of SQL
queries a user daily issue to the database, or some repre-
sentative set of queries representing the past. For example,
[16] relied on the SQL-expression syntax of queries to con-
struct user profiles. This approach has the advantage that
the query processing of the intrusion/insider detection system
is computationally light: a new query is analyzed and run
through some statistical model (e.g., clustering) and only
queries that are accepted by the detection system are then
actually executed in the database engine. However, as we shall
later demonstrate in this paper, this syntax-centric view is
ineffective and error-prone for database anomaly detection in
general, and for database insider threat detection, in particular.
For example, two queries may differ widely in syntax and
yet produce the same “normal” (i.e., good) output. Thus, a
syntax-based detection engine might generate false positives
on these queries. Conversely, two queries may be very similar
in syntax and yet generate completely different results, causing
the syntax-based engine to generate false negatives.

Our conviction is that the best way to distinguish normal
vs. abnormal (or good vs. malicious) access patterns is to look
directly atwhat the user is trying to access – the result of the
query itself – instead ofhow he expresses it, i.e. the SQL
expressions. Two syntactically different queries with similar
result tuples should be considered the same (whether good
or malicious) by the threat detection engine; conversely, two
syntactically similar queries should be considered different
if they result in different tuple sets. An insider who tries
to peek at a part of the database which he often does not
access will be caught. The same holds for an attacker using
a compromised account as the attacker’s data access pattern
will likely be different from the real account owner’s access
pattern. Data browsing for harvesting purposes would also be
caught if browsing is not part of his daily routines.

The conviction is the core of our answer to question (1)
above; our approach is data-centric rather than syntax-centric:
user behavior is modeled on the basis of the data generated by
executing their queries as opposed to the syntax of the SQL
expressions. We shall show that the data-centric approach is
superior in terms of detecting anomalous user access patterns.
Technically, however, it is still not quite clear what a user
profile is. A typical database may consist of millions of data
tuples, it is certainly impractical and in fact may not even be
useful to explicitly keep track of all data tuple sets that are
the results of “normal” queries. Briefly, we solve this problem

by viewing the data as a universal-relation [17]. Each query
result (a set of tuples) will be represented by a compact vector
whose dimension is fixed, regardless of how large the query’s
result set is. More details will be given in Section IV.

Intuitively, this approach has pros and cons. On the plus
side, for an insider to evade our system, he would likely
have to generate queries with the same (or statistically similar)
result set as the result sets he would have gotten anyhow with
his legitimate queries using his existing privileges, rendering
the attempt at circumvention inconsequential. In the syntax-
based approach, queries with similar syntax can give different
results and the attacker may be able to craft a “good-looking”
malicious query to access data he’s not supposed to access.

On the minus side, a query has to be executedbefore the
decision can be made on whether or not it is malicious. What if
a malicious query asks for hundreds of gigabytes of data? Will
the query have to be executed, and will our detection engine
have to process this humongous “result set” before detecting
the anomaly? These legitimate concerns are within the scope
of question (2) above. We will show that this performance-
accuracy tradeoff is not at all as bad as it seems at first
glance. We will experimentally show that a representative
constant number of result tuples per query are sufficient
for the detection engine to perform well, especially when
the right statistical features and distance function (between
normal and abnormal result sets) are chosen. Furthermore,
these (constant number of) result tuples can be computed
efficiently by leveraging the pipelined query execution model
of commercial RDBMSs. Feature selection and the distance
function choice are among the key contributions of this paper.

The rest of this paper is organized as follows. Section II
surveys background and related works. Section III demonstrate
technically the limitations of the syntax-based approach,moti-
vating the data-centric approach introduced in Section IV.Sec-
tion V gives a brief taxonomy of query anomalies facilitating
the experiments presented in Section VI. We further discuss
our solution, its implications, and future research directions in
Section VII.

II. BACKGROUND AND RELATED WORK

Several intrusion detection systems (IDS) with direct or in-
direct focus on databases have been presented in the literature.
Generic approaches and architectural frameworks for database
IDS have been proposed in [18] and [19]. In [20], the real-
time properties of data are utilized for intrusion detection in
applications such as real-time stock trading. Kreugel et. al.
[21] and Valeur et. al. [14] present schemes for the detection
of anomalies such as SQL-injection attacks in web-based
applications. We believe that detection of sql-injection attack
is a specific kind of database query anomaly that is detected by
our approach in a straightforward manner as we will explain
in this paper.

Data dependency among transactions is used to aid anomaly
detection in [13] – the central idea here is that database
transactions have data access correlations that can be used
for intrusion detection at the transaction and user task levels.



Similarly, in [22], the concept of dependency between database
attributes is used to generate rules based on which malicious
transactions are identified. The DEMIDS system [11] detects
intrusions by building profiles of users based on their working
scopes which consist of feature/value pairs representing their
activity. These features are typically based on syntactical
analysis of the queries. A system to detect database attacks
by comparison with a set of known legitimate database trans-
actions is the focus of [12]. SQL statements are summarized as
regular expressions which are considered to be ‘fingerprints’
for legitimate transactions – this again, is based on analysis at
the syntactical level. In [23], an approach to intrusion detection
in web databases is proposed that is based on constructing fin-
gerprints of all sql statements that an application can generate.
A binary vector with length equal to the number of fingerprints
is used to build session profiles and aid in anomaly detection.
This approach introduces assumptions such as restrictionson
the number of distinct queries possible, and may complement
our approach in cases where the assumptions are valid. In
[24], database transactions are represented by directed graphs
describing the execution paths (select, insert, delete etc.) and
used for malicious data access detection. This approach cannot
handle adhoc queries (as the authors themselves state) and
works at the coarse-grained transaction level as opposed to
the fine-grained query level. Database session identification is
the focus of [25] – queries within a session are considered to
be related to each other, and an information theoretic metric
(entropy) is used to separate sessions; however, whole queries
are used as the basic unit for n-gram-statistical modeling of
sessions. A multiagent based approach to database intrusion
detection is presented in [26]; relatively simple metrics such as
access frequency, object requests and utilization and execution
denials/violations are used to audit user behavior.

Prior approaches in the literature that have the most similar-
ity to ours are [15] and [16]. The solution for database anomaly
detection proposed in [15] is similar in the use of statistical
measurements; however the focus of the approach is mainly
on detecting anomalies in database modification (e.g.,inserts)
rather than queries. The query anomaly detection component
is mentioned only in passing and only a limited set of features
(e.g., session duration, number of tuples affected) are consid-
ered. The work presented recently in [16] has the same overall
detection goals as our work here – detection of anomalies in
database access by means of user queries. However, it takes an
approach that is based on analyzing the syntax of sql strings
for anomaly detection, unlike our approach of analyzing the
results of query execution. A primary focus on this paper
will be on exposing the limitations of syntax based detection
schemes; the approach in [16] will be used in this paper as a
benchmark for evaluating the performance of our approach.

III. L IMITATIONS OF SYNTAX -CENTRIC APPROACH

This section presents examples to demonstrate the limita-
tions of the syntax-centric approach, showing that two syn-
tactically similar queries may generate vastly different results,
and two syntactically distinct queries may give similar results.

Consequently, statistical profiles based on SQL expressions are
limited in their ability to recognize users’ intents. For example,
a syntax-based approach may model a query with a frequency
or characteristic vector, each of whose coordinates counts
the number of occurrences (or marks the presence) of some
keywords (e.g.,select, from, etc.) or mathematical
operators [16].

Consider the following query:

SELECT p.product_name, p.product_id
FROM PRODUCT p
WHERE p.cost == 100;

A syntactical analysis of this query and subsequent feature
extraction (e.g., [16]) might result in the following features
for query data representation – SQL Command –SELECT,
Select Clause Relations –PRODUCT, Select Clause Attributes
– productname, productid, Where Clause Relation –PROD-
UCT, Where Clause Attributes –cost. Now consider the
alternate query:

SELECT p.product_name, p.product_id
FROM PRODUCT p
WHERE p.cost != 100;

This query has the same data representation (based on
syntax-analysis) as the previous one; however, it is easy to
see that the data tuples accessed in the two cases are very
different (in fact, they are the complement of each other).

Similarly, consider the first query rewritten as follows:

SELECT p.product_name, p.product_id
FROM PRODUCT p
WHERE p.cost == 100
AND p.product_name is not null;

This query has a different syntax (two columns and a
conjunction operator in the WHERE clause), but produces the
same result tuples as the first (under the reasonable assumption
that all products in the database have a valid product name).
Most syntax-based anomaly detection schemes are likely to
flag this query as an anomaly with respect to the first.

Syntax analysis, even if very detailed (taking into account
differences in operators, e.g., ‘==’ and ‘!=’ in the examples
above) is complicated given the richness of the SQL lan-
guage, and involves determiningquery equivalence, which
is difficult to perform correctly. In fact, query containment
and equivalence is NP-complete for conjunctive queries and
undecidable for queries involving negation [27]. Instead of
modeling queries in terms of syntactical constructs (e.g.,
select, whereclauses), we propose to bypass the complexities
and intricacies of syntax analysis and model queries in terms
of data access, i.e., the actual database tuples that are returned
as a result of query execution.

The examples above give the reader the insight into why
syntax-based approaches may not perform well. We shall
demonstrate this limitation experimentally in a later section,



and also experimentally compare it with our data-centric
approach.

IV. U SERPROFILES IN DATA -CENTRIC APPROACH

The main premise of the data-centric approach to the
database insider threat detection problem is: the actual data
returned after query execution is the most important discrim-
inator of user intent. In a logical sense, we care about the
semanticsof the queries, not their syntax. This notion is
intuitive because a malicious insider typically tries to acquire,
refine and enhance his/her knowledge about different data
points and their relationships – this act likely involves data
access patterns that may be atypical for his/her job function.
The deviation from normal access patterns should occur in
both the data harvesting type, the masquerading type of
attacks, and also the compromised account case (where an
intruder gains access to an insider’s account).

To develop a suitable data-centric query representation
format, we begin by considering theUniversal Relation[17]:

A. Database Schema and the Universal Relation

A relational database [1] may consist of multiple relations
with attributes and relationships specified by multipleprimary
keyandforeign keyconstraints. One way of visualizing such a
database is as a single relation, called theUniversal Relation
[17], incorporating the attribute information from all the
relations in the database. Our goal is to be able to keep track
of user access patterns to data tuples in the database.

A straightforward approach to profiling user data access
might proceed as follows – for a universal relation withn

attributes, each data tuple is viewed as a point in somen

dimensional space; a user may be profiled by the set of such
points he/she typically accesses. Each query is thus a set
of points in this space. However, in practice, the number of
attributesn in the universal relation and especially the number
of data points accessed by users are prohibitively large; this
straightforward method is unlikely to be scalable. Moreover,
it is not clear how a new point set representing the new query
can be classified as normal/abnormal using this method.

Our approach is as follows: instead of keeping track of
individual data tuples, we compute a statistical “summary”
of the query’s result tuples. The summary for a query is
represented by a vector of fixed dimension regardless of how
large the query’s result tuple set is. This way, past queries
(i.e. normal queries) from a user can be intuitively thought
of as a “cluster” in some high dimensional space. We have
to emphasize that clustering is only one of several statistical
learning technique we will test for this problem. The term
clustering is used here to give the reader an intuitive senseof
the model. When a new query comes, if it “belongs” to the
user’s cluster, it will be classified as normal, and abnormal
otherwise.

Relations consist of various kinds of numeric and non-
numeric attributes (columns) and data tuples (rows). The
execution of a query results in the return of a subset of data
tuples from the database as a result of database operations such

asprojection, selectionand join. Identification of the schema
for the database queried allows us to represent each row (tuple)
in the execution result of a query as a tuple in the universal
relation corresponding to the database. A data-centric query
representation format called anS-Vector(statistics/summary
vector) is described in the following subsection.

B. S-Vectors

An S-Vector is a multivariate vector composed of real-
valued features, each representing a statistical measurement;
it is defined by the columns of the universal relation corre-
sponding to a database. Each attribute of the universal relation
contributes a number of features to the S-Vector:

• Numeric Attributes: Each numeric attribute contributes
the measurementsMin (minimum value),Max (maximum
value),Mean, MedianandStandard deviation.

• Non-Numeric Attributes: The statistics computation does
not make sense for non-numeric attributes such aschar
and varchar. For categorical attributes, one option is to
expand ak valued attribute intok binary-valued numeric
attributes (value 1 if the category is represented in the set
of result tuples and 0 otherwise) and compute statistics
on it as usual. However, the expansion of categorical
attributes may result in anS-vectorthat has far too many
dimensions – we compromise by replacing each categor-
ical attribute with two numeric dimensions representing
the total countof values, as well as the number ofdistinct
valuesfor this attribute in the query result.

The S-Vector format for a database is determined by its
schema; the value of the S-Vector for a query is determined
by executing the query and computing the relevant attribute
statistics based on the set of result tuples and the result schema.
Table I shows the S-Vector format for a database consisting
of a single relation. To illustrate how an S-Vector value for
a query is generated, consider the following query executed
against the database in Table I:

SELECT p.cost
FROM PRODUCT p
WHERE p.type = ’abc’;

For this query, the result schema consists of the single
column Product.cost and statistics computed on the result
tuples are used to populate theProduct.Min, Product.Max,
Product.Mean, Product.StdDevand Product.Medianfeatures
of the S-Vector format for the database – the result is the
S-Vector representation of this query.

V. A TAXONOMY OF QUERY ANOMALIES FROM THE

DATA -CENTRIC VIEW

In order to evaluate the effectiveness and accuracy of a
threat detection engine, a taxonomy of query anomalies is
useful to aid in reasoning about potential solutions. Subsequent
experiments can be analyzed in the light of this taxonomy and
the performance of detection schemes with respect to specific
anomalies can be evaluated.



TABLE I

STATISTICS VECTOR FORMAT FOR SAMPLEDATABASE SCHEMA

Database Schema S-Vector Features
Relation Attribute

Product.type(varchar) Product.type.ncount
Product.type.ndistinct

Product Product.cost.Min
Product.cost(numeric) Product.cost.Max

Product.cost.Mean
Product.cost.StdDev
Product.cost.Median

We will classify query anomalies based on how “far” the
anomalous query is from a normal query. From a data centric
view point, two queries are represented by the two query
execution results, each of which consists of the result schema
(the columns) and the result tuples (the rows). If the result
schemas are (very) different, the two queries are different. If
the result schemas are similar, then we need to look into how
different the result tuples are. On this basis we classify query
anomalies.

A. Type 1 – Different Result Schema/Different Result Tuples

This is a typical case since queries that differ in the
result schema have distinct SQL expressions (especially in
the SELECT clause) and should be readily detected by both
syntax-centric and data-centric schemes (since result tuples
differ). From the insider threat perspective, data harvesting
and masquerading can both result in this type of anomaly. As
an example, consider the two queries to the database described
in Table I:

Query 1: SELECT p.cost
FROM PRODUCT p
WHERE p.type = ’abc’;

Query 2: SELECT p.type
FROM PRODUCT p
WHERE p.cost < 1000;

Distinguishing these kinds of queries has received the most
attention in the literature (e.g., [16]) especially in the context
of masquerade detection and Role Based Access Control
(RBAC), where different user roles are associated with differ-
ent authorizations and privilege levels (to execute commands,
queries etc.) [28]. An attempt by one user-role to execute
a query associated with another role indicates anomalous
behavior and a possible attempt at masquerade.

Syntax-based anomaly detection schemes have been shown
to perform well for this case and it is our contention (and
indeed we show later) that data-centric schemes should also
be equally effective – different result schema necessarily
implies different result tuples, and therefore different statistical
characteristics for the results.

B. Type 2 – Similar Result Schema/Different Result Tuples

The result schema is similar for two queries in this case, but
the data tuples are (significantly) different. We consider two
sub-cases within this category – one is hopefully distinguished
by most good syntax-centric schemes, the other is usually
undetected by most syntax modeling schemes. As an example,
consider the base query:

SELECT *
FROM PRODUCT p
WHERE p.cost == 1000;

Execution of this query results in the schemap.type, p.cost

and data corresponding to the WHERE conditionp.cost =
1000. We consider two variations of this query:

• Type 2(a) (Distinct Syntax) –Consider the query:
SELECT *
FROM PRODUCT p
WHERE p.cost < 1000 AND

p.type = ‘abc‘;

This query has the same result schema as the previous
one with a possibly different result tuple-set (matching
the additional constraint of the product type); however,
the SQL expression syntax is distinctly different, and
the WHERE clause has an additional attribute that is
checked (p.type) compared to the previous query. Good
syntax based analysis schemes should be able to detect
this variation.

• Type 2(b) (Similar Syntax) –Now consider another query:
SELECT *
FROM PRODUCT p
where p.cost < 1000 AND

p.cost > 1000;

This query has the same result schema as the previous
two; however the result tuples are the complement of
that for the first query. Syntax analysis of the SQL
expression would show the same attribute in the WHERE
clause as the first; most syntax-centric modeling schemes
(e.g., [16]) would have an identical representation for this
query as the first. The query can be rewritten in multiple
ways (e.g.p.cost!= 1000) with various combinations of
constants, arithmetic and logical operators; even a very
detailed syntax-based modeling scheme may be hard-
pressed to consider all variations. However, data-centric
modeling schemes are expected to readily identify this
variation since the statistical characteristics of the results
are likely to be vastly different from those of the first.

From the insider threat perspective, data harvesting and mas-
querading can both result in this type of anomaly. Another
example of a well-known attack class that may fall in this
category isSQL-injectionsince a typical attack is one that
injects input causing condition checks to be bypassed resulting
in the output of all tuples – e.g., a successful exploit of the
first example above may lead to the execution of



SELECT * FROM PRODUCT p
WHERE 1;

C. Type 3 – Similar Result Schema/Similar Result Tuples:

A query whose execution results in a (statistically) similar
schema and result tuples as another is considered to be similar
from a data-centric viewpoint. Clearly, if the queries have
the same syntax, then their resulting schemas and tuples are
the same and theyare identical from both the data-centric
and syntax-centric view. The interesting case arises when a
query producing the same result as another differs in syntax–
syntax-based detection schemes are designed to disallow these
queries or automatically flag them as anomalous. However,
the question of whether such a query is truly an anomaly or
not requires further analysis. Two distinct sub-cases may be
considered depending on query semantics:

• Type 3(a) (Similar Semantics)– In this case, denying
the query is an unnecessary restriction that syntax-centric
schemes impose on the user. As an example, consider the
query:

SELECT p.type
FROM PRODUCT p
where p.cost < 1000;

and the alternate query:

SELECT p.type
FROM PRODUCT p
WHERE p.cost < 1000 AND p.type IN
(SELECT q.type FROM PRODUCT q);

Here, the results of the queries are the same, and so are
the query semantics and the underlying user intent – to
retrieve product types that cost less than a certain amount,
but the queries have very different SQL expression syn-
tax. Data-centric approaches would correctly permit the
second variation that may be denied by syntax-centric
modeling schemes.

• Type 3(b) (Different Semantics)– Even though two
queries expose exactly the same tuples, in some cases,
an attacker may learn additional information because of
their different semantics. As an example, consider this
query in relation to the first above:

SELECT p.type
FROM PRODUCT p
WHERE true;

Now assume, for the sake of illustration, that the attacker
is attempting to see all product types (data harvesting).
If the above query returns more (or different tuples) with
respect to the first example, then the data-centric approach
should, conceptually detect this. But if the result tuples
are exactly the same, this would (as expected) be permit-
ted by the data-centric approach. However, the attacker
has now gained the additional information (based on his
results from the first query above), that all product types
in the database cost less than 1000, and has refined his
knowledge regarding some entity. This kind of successive
knowledge accrual has received much interest in the areas

of privacy preserving data mining and query auditing (
[29], [30]). Syntax-centric schemes would blindly disal-
low this, but as we have shown, this may be an extreme
step that may restrict many legitimate queries. The attack
here arises from information refinement through temporal
interaction between a user and a database and not from
a property of the query itself (i.e., its syntax or result
data). Exploiting temporal features from a data-centric
viewpoint is an important future research direction of
ours. It should be noted, however, that it is difficult for an
attacker to intentionally exploit this condition, since he
is unable to predict the nature of query output to ensure
that result statistics are unchanged from a normal query.
In any case, addressing this type of attacks is beyond the
scope of this paper.

The different types of query anomalies are summarized in
Table 2. In the next section, we present our experiments testing
a prototype of a data-centric insider detection system and
validate our approach for detecting types 1 and 2 anomalies.
Type 3 is outside the scope of this paper.

VI. EXPERIMENTAL VALIDATION

We begin this section with a description of a prototype of
a data-centric anomaly detection system calledQStatProfiler.
We will also elaborate on the framework of the experimental
setup, and detail our validation steps.

A. Test Setup

The testing environment consists of a web application
for Graduate Student Admissions (GradVotethat relies on a
Postgresql [31] database at the back-end. There are a number
of users of the system that interact with the database by
means of queries – this interaction happens primarily via the
web application. The users fall into several user categories,
including Chair, Faculty andStaff.

The database schema consists of 20 relations with multiple
(over 20 for some tables) numeric and non-numeric attributes
and 39 multi-level views (i.e., the views refer to base re-
lations as well as to other views). The training and testing
dataset consists of tens of thousands of user queries that are
labeled both by individual user-name as well as by user-role.
These views are significantly complex, possessing multiple
subqueries, complex joins and computed attributes (e.g,sum,
averageof the values in a numerical field).

Our system,QStatProfileris positioned so that the interac-
tion channel between the application and the database is visible
(i.e., it can observe the queries to the database as well as the
query execution results returned to the application). As queries
are submitted to the database and result tuples are returned, the
ID system simultaneously computes query statistics and theS-
Vector for the query. The anomaly detection engine is flexible
and can accommodate a variety of machine learning/clustering
algorithms – we elaborate on different algorithms and anomaly
detection goals in the following sub-section. The high-level
setup is depicted in Figure 1 (configured to perform role-based
masquerade detection) – the solid figures represent system



TABLE II

QUERY ANOMALIES – DATA -CENTRIC V IEW

Anomaly Cases Types Detected by Detected by Attack Models
(Result Schema/Tuples) Syntax-Centric? Data-Centric?

Type 1. Diff. Schema/Diff. Results Yes Yes Masquerade
Type 2. Similar Schema/Diff.Results (a) Distinct Syntax Yes Yes SQL-injection

(b) Similar Syntax No Yes Data-harvesting
Type 3. Similar Schema/Similar Results(a) Diff. Syntax/Similar Semantics Yes (false positive) Yes (allowed) Data harvesting

(b) Diff. Syntax/Diff. Semantics Yes No

components, the broken lines indicate the flow of information
among these components. We elaborate further on various
aspects of this system below.

Query Filtering: An important task for database intrusion
detection is to construct accurate profiles for users/rolesin or-
der to perform anomaly detection effectively. For this purpose,
it is necessary to overlook queries that are generated not byany
specific user, but by the interface of the web application (thus
these are common for all users). For example, the application
may issue a query to the database to obtain the currently active
list of users, or the time-line for a particular activity, and so
on – these queries may sometimes be generated as part of
application startup. The set of these queries is well-knowna
priori , since they may be embedded in the application code
and can be overlooked for the purpose of user profiling. In
our case, we maintain a list ofurl tags that indicate common
application queries – queries generated by these pages are
classified asFramework Queriesby QStatProfiler.

Query Parsing and Unfolding: This component is con-
cerned with obtaining the mapping between the schema of
the result set and the overall schema of the database. The
syntax of a user query may not refer directly to elements of the
base database schema (i.e., base relations and their attributes).
References may be made to views that might refer to other
views; the use of aliases and in-line subquery definitions can
complicate the task of schema mapping.QStatProfiler uses
a query parsing component that is tailored to thePostgresql
SQL syntax. Query parse trees are constructed which are then
analyzed to determine the subset of the database relations and
attributes that are present in the result tuples. The outputof
this phase is thus a set of relations and attributes that describe
the result tuples.

B. Performance Considerations – S-Vector Approximation

Our approach relies on actual execution of SQL queries and
analysis of results to enable anomaly detection. This may lead
to concerns regarding the performance penalty of the approach,
especially with regard to database performance overheads.We
address these concerns in this subsection.

First, we argue that the approach does not impose significant
additional burden to the database server. In most application
environments (e.g., web database applications), execution of
database queries is part of typical application function. For
example, a user might submit queries through a web form; the
queries are executed at a remote database server and the results
are made available to the application. Our system (Figure 1)

operates as a passive component between the application and
the database server, observing queries and the corresponding
results without disrupting normal functioning. The database
does not experience any additional load due to the anomaly
detection system; the computational cost of calculating result
statistics falls on a different host that runs the ID system
(QStatProfiler).

Secondly, and as alluded to earlier, the data-centric approach
needs to see some data, necessitating some performance
penalty if we compare it to the syntax-centric approach on
a malicious query that the syntax-centric approach is able
to detect. However, as we shall see, the execution of one
pinelined round in the RDBMS is sufficient for the data-
centric engine to perform well. The extra burden put on the
server is minimal. In general, we propose to utilize onlyk

tuples from the result set to build the corresponding S-vector.
Two variations are considered for S-Vector approximation of
a query in the online (testing) phase:

Top–k tuples: In this case, only the top (initial)-k tuples in
the result set are considered to approximate the entire result
set. Statistics computed from these tuples are used to generate
the S-Vectorrepresentation of the query.

Random–k tuples: k number of tuples are chosen at random
from the complete result set and considered for computation
of the statistics needed for the S-Vector representation. This
approach is expected to produce better accuracy as compared
to the top-k approach as it is not likely to be sensitive to
specific orderings of the result tuples by the database (thisis
especially important if the SQL query contains ‘ORDER BY’
clauses). Fortunately, we shall show that our particular way of
picking the distance function seems tonot be very sensitive
to result set ordering.

In the next subsection, we consider the validation of the
data-centric approach from two angles – detecting anomalies
that fall into Type 1 and Type 2 in table II. The two cases are
considered separately.

C. Validation – Type I Anomalies

The typical case of query anomaly detection involves de-
tecting instances of Type 1. Although we claim conceptually
that the data-centric approach should prove effective, we have
to confirm this intuition with real experiments. We consider
the specific case of role-based masquerade detection as the test
setting – where specific queries are associated with user roles
and execution of a query by a user belonging to another group
constitutes an anomaly. We will benchmark this aspect of
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TABLE III

DETECTIONPERFORMANCE– TYPE 1 ANOMALIES (ROLE MASQUERADE)

Roles Algorithm C M F S-V S-V S-V S-V S-V S-V S-V
quip. quip. quip. (all) I(20) R(20) I(10) R(10) I(5) R(5)

Chair Vs Faculty N-Bayes 81.67% 85.33% 75% 85% 85% 82.67% 78.33% 77% 81.67% 90%
Dec. Tree 88% 87.67% 87.67% 96.33% 88.3% 88.3 % 89% 88.67% 88.67% 88.67%
SVM 83.3% 81% 87.67% 82.33% 74.67% 77% 71.33% 75.67% 68% 74.33%

Chair Vs Staff N-Bayes 58% 93.5% 95.5% 60.5% 59% 60.5% 62% 57.5% 62.5% 60.5%
Dec. Tree 75% 88% 96% 95.5% 92.5% 96% 96% 93% 95% 92.5%
SVM 51.5% 84.5% 96% 80% 84% 85.5% 78.5% 81.5% 85.5% 82%

Faculty Vs Staff N-Bayes 84.33% 90.67% 93% 58.67% 61.3% 60.3% 60.3% 59.3% 63% 60%
Dec. Tree 90% 93.67% 95.67% 89.3% 92.3% 91.67% 92% 93.67% 91.33% 91.67%
SVM 87% 93% 95.67% 69.67% 71.67% 71% 69.33% 72% 68.67% 72%

performance by comparison with a syntax-centric scheme that
has been successfully applied to the detection of role-based
anomalies [16]. Our goal here is to show that our data-centric
scheme performs at least as well as syntax-centric schemes
for Type 1 anomalies.

Syntax-Centric Format:For the sake of completeness, we
present a brief summary of the syntax-centric data formats
presented in [16]. Three representations are considered –
Crude (C-quiplet), Medium (M-quiplet)and Fine (F-quiplet)
recording varying levels of detail.

• C-quiplet: This is acoarse-grainedrepresentation con-
sisting of the SQL-command, count of projected relations,
count of projected attributes, count of selected relations
and a count of selected attributes.

• M-quiplet: Thismedium-grainedformat records the SQL
command, a binary vector of relations included in the
projection clause, an integer vector denoting the number
of projected attributes from each relation, a binary vector
of relations included in the selection clause, and an
integer vector counting the number of selected attributes
from each relation.

• F-quiplet: This is a fine-grained query representation. It
differs from the M-quiplet in that instead of a count of
attributes in each relation for the selection and projection

clauses, a binary value is used to explicitly indicate the
presence or absence of each attribute in a relation in the
corresponding clauses.

Test Procedure: The available dataset of queries is la-
beled by the rolesStaff, Faculty, and Chair, in addition to
Framework, for the common application-generated queries,
as described above. The set of queries is randomized and
separated intoTrain andTestdatasets of 1000 and 300 queries
respectively. For benchmarking performance, four query data
representations are tested – ourS-Vector (dimensionality –
1638) and the syntax-centricC-quiplet (dimensionality – 5),
M-quiplet (dimensionality –73) andF-quiplet (dimensional-
ity – 1187) data representations from [16]. Three machine
learning algorithms are tested with each of these data formats
– Naive Bayes Classifier (NBC), Decision Tree Classifier
and Support Vector Machines. Since role information is typ-
ically available in a masquerade detection environment, the
algorithms are trained and tested on labeled data (supervised
learning). These well-known approaches are described briefly.

• Naive Bayes Classifier (NBC):The NBC [32] is a well-
known technique that has proven to be effective in many
applications such as text classification. The classifier is
based onBayes Theoremand operates under theMaxi-
mum Aposteriori Probability(MAP) decision rule – given



an instance to be classified, the classifier decides on the
correct class if it is more probable than any other class.
If the attributes of this instance are(a1, a2, a3, ...an) and
C is the set of classes, the most probable classCMAP is
given by:
CMAP = arg maxcj∈C P (cj |a1, a2, a3, ..., an)
By Bayes Theoremand by the conditional independence
attribute that NBC makes with respect to attributes, this
reduces to choosingCMAP as
CMAP = arg maxcj∈C P (cj)Πi P (ai|cj)
The probabilities (including conditional probabilities)are
estimated based on the training data. Further details on
NBC are available in [32].

• Decision Trees:Decision tree algorithms are well known
machine learning techniques that are popular in data
mining applications. A decision tree is a structured plan
to test attributes in order to eventually arrive at a class
prediction – this structure is similar to a tree (hence the
name). The attributes to be tested are in the order of
the information gain [32] that they possess – at each
step of tree construction, the attribute with the highest
information gain (among those not yet part of the tree)
is added to the decision tree. The tree gets constructed
during the training phase as is dependent on the attribute
characteristics of training instances. We utilize the J.48
decision tree algorithm [33] in our experiments.

• Support Vector Machines:Support vector machines per-
form classification by constructing hyperplanes for vari-
ous classes and a decision boundary for class separation.
The decision boundary is constructed during the training
phase and is used during the online (testing) phase to
classify new instances. The training instances that lie on
the hyperplanes that lead to the definition of the decision
boundary (i.e., those that would change the solution if
they were omitted) are calledsupport vectors. Details on
Support Vector machines are available in [34].

The results for the binary classifiers for masquerade de-
tection are depicted in Table III (the best performance for
each format with respect to separating user roles is shown
in boldface). In the table, I(k) and R(k) denote the Initial-
k and Random-k S-Vector approximations. We note that the
performance of the S-Vector based detection is comparable
to those of the syntax-based schemes (even better in some
cases). We also note that the Top-k and Random-k S-Vector
approximations perform competently. We note that for the
Faculty Vs Staffcase, the syntax centricF-quiplet performs
better than the S-Vector (95.67% to 89%). Our analysis shows
that the Faculty and Staff roles are not well separated in
terms of data access (this also explains the poor performance
of the Naive-Bayes and SVM algorithms for the S-Vector in
this case) which may be responsible for this effect. It is seen
that the Top-k and Random-k approximations give slightly
better results than the full S-Vector – this may be due to the
effects of overfitting for this particular dataset. However, in
general, the techniques show comparable performance, and

the Decision-Tree algorithm is found to work best with the
S-Vector representation.

D. Validation – Type 2 Anomalies

The focus here is on detecting queries are similar in syntax,
but differ in output data (data-values, output volume, or both).
This is a significant query anomaly since, in a typical attack, a
minor variation of a legitimate query can output a large volume
of data to the attacker. This may go undetected and may be
exploited for the purpose of data-harvesting. In other attack
variations, the volume of the output may be typical, but the
data values may be sensitive. These kinds of attacks fall into
Type 2(b) in Table II. Since Type 2(a) anomalies are detected
easily by syntax analysis, this is similar to Type 1 for testing
purposes, and will not be considered separately.

Test Procedure:Since a suitable dataset of Type 2(b)
anomalies was not readily available to us for testing purposes
(since these may be considered possibly malicious or unusual
in typical domains), we manually create a test-set. The set
consisted of variations of normal queries (i.e., queries normally
executed by users in our dataset) that were designed to bypass
syntax-centric schemes; this ‘anomaly set’ has approximately
the same distribution of distinct queries as the original dataset.
The query variations are easy to generate by varying arithmetic
and logical operators and constants. As an example, consider
the query:

SELECT * FROM vApplicants
WHERE reviewStatusID = ’a’
AND reviewStatusID = ’b’;

A suitable Type 2(b) variation is as follows:

SELECT * FROM vApplicants
WHERE reviewStatusID = ’a’
OR reviewStatusID = ’b’;

It must be noted that the queries considered here are differ-
ent from masquerade attacks (since they are not representative
of any authorized user of the system) and are typically not
available for training a detection system. Hence, supervised
anomaly detection approaches are not suitable here. We con-
sider two detection techniques that detect potential anomalies
based on a single class ofnormal queries – aCluster-
Based Outlier Detectionmethod, and another approach we
call ATTRIB-DEVIATIONwhich is found to perform better.

Cluster-based Outlier Detection:The set of queries en-
countered during the training phase can be considered as
points in anm dimensional vector (m is the dimensionality
of the S-vector) space. A clustering technique (e.g.,K-means
clustering) can be used to discover clusters representing similar
users (e.g., belonging to the same role) if role-information
is missing; however, in our case role data is available and
this information can be used to partition the data into role-
clusters (i.e., theFacultyandStaff clusters). Additionally, the
training data can be considered to be free from ‘attack’ (or bad)
queries; if necessary, the training data can be made robust to
the effects of bad queries or noise by pruning 5–10% of the



TABLE IV

TYPE 2(B) ANOMALIES – CLUSTER BASED OUTLIER DETECTION

Format S-V S-V S-V S-V S-V S-V S-V
(all) I(20) R(20) I(10) R(10) I(5) R(5)

Detection 83.87% 12% 67.7% 6.4% 45.1% 6.4% 35.4%

TABLE V

TYPE 2(B) ANOMALY DETECTION– ATTRIB-DEVIATION

Format S-V S-V S-V S-V S-V S-V S-V
(all) I(20) R(20) I(10) R(10) I(5) R(5)

Detection 90.3% 90.3% 90.3% 90.3% 90.3% 90.3% 90.3%
Min. No. Anom.

Dimensions 5 4 5 4 5 4 5

outliers. Training data consisting ofn queries (vectors) can be
represented by then × m matrix

An×m =









x11 x12 ... x1m

x21 x22 ... x2m

... ... ... ...

xn1 xn2 ... xnm









For each user cluster, we select a point in the Euclidean
space that is representative of the entire cluster, called the
cluster centroid. A cluster centroid may be chosen so as to
minimize the sum of the squared Euclidean distances of the
cluster points:

Centroid = 1
n

∑n
i=1 xi

For a test S-Vector, the distances (using the Euclidean
distance metric) from the cluster centroids are computed;
the query is flagged as an outlier if the vector distance is
greater than a specified threshold from any user. In our case,
we specify the threshold as 3 times the standard deviation;
this is the outlier specification typically utilized for a normal
population. A typical performance result with two user clusters
(Chair and Faculty) and corresponding anomalous query set
is shown in Table IV.

Results with role-cluster based outlier detection provide
some interesting insights. While detection rate for the S–
Vector(all results) is reasonable (83.87%), it is seen thatresults
with the Top-k results-approximation suffers significantly. On
analysis, we find that many of the user queries make extensive
use of the SQLORDER-BY clause. Understandably, this
results in a skewed representation of the overall result statistics
in the topk tuples. This is ameliorated to some extent by the
Random-k variation (e.g., for randomk = 20, the detection
rate improves to 67.7%); however, there is still a marked
decline in performance indicating that the clustering scheme
is sensitive to the approximation schemes and is affected
negatively by them. Further analysis into the clustering reveals
that this may perhaps not be the perfect scheme for anomaly
detection. Although anomalies with significant variationsin
multiple dimensions are easily detected by clustering (as for
many of our examples), this may not be true in the general
case. Firstly, distances in high-dimensional space may be

misleading indicators of anomalies because of thecurse of
dimensionality. For example, it is possible to have a highly
anomalous value along a single dimension, which may not
translate to a significant Euclidean cluster-distance (andvice-
versa). As a final validation of the poor performance of clus-
tering, we tested the original problem of masquerade detection
(Chair Vs Faculty) using single-class outlier detection – the
performance was below 10%.

We develop an alternate technique for anomaly detection
that can deal with the shortcomings of clustering. This is based
on an insight into the nature of query anomalies and how the
correspondingS-Vectorsare affected.

ATTRIB-DEVIATION: Consider, for example, that a user
issues an anomalous query with a different statistic for the
same attribute in the result schema as a normal query. In
our representation, this difference shows up in one or more
(depending on whether the attribute iscategoricor numeric)
dimensions of the S-Vector. Hence, monitoring for anomalies
on per-dimensionbasis is a promising approach. Further, if
a query generates unusual output for more than one attribute,
this is likely to reflect in anomalous values for several S-Vector
dimensions; thus, the number of anomalous dimensions for the
S-Vector is a parameter that can be used for ranking potential
query anomalies (i.e., queries with more anomalous S-Vector
dimensions rank high as likely candidates for possible attacks).
We utilize this approach for testing the custom-developed
anomaly set – normalChair and Faculty queries are used to
compute the mean values of S-Vector attributes; three times
the standard-deviationis again used as an anomaly separator.
The results are summarized in Table V (the third row indicates
the minimum number of anomalous dimensions for any query
in the test-set that is found to be anomalous).

Again, the results reveal some interesting insights. While
detection performance for the S-Vector (all results) improves
as compared to the clustering approach (90.3% compared to
83.87%), we find that the attribute-deviation based scheme
is remarkably resilient to the approximation schemes (both
Top-k as well as Random-k). The approximation schemes
perform as well as the full vector representation, but the Top-



k performs unexpectedly well even with queries generating
specific ordering of results.

Based on our analysis, we offer the following explanation.
First, note that a single anomalous attribute in the result cor-
responds to variations in multiple dimensions of the S-Vector,
each of which represents a statistical measurement. Also the
extent of the anomaly may vary between result attributes
(e.g., some attributes may have more atypical values). While
a selective ordering (e.g., by SQLORDER-BYclauses) may
offer a skewed view of overall result statistics, theATTRIB-
DEVIATION technique operates on a per-attribute basis and is
thus still able to identify anomalies. Secondly, many queries
have more than one anomalous attribute; hence selective order-
ing may mask anomalies in some attributes, but not in others.
Thirdly, the selective ordering may not affect all statistical
measurements of a single attribute equally (e.g., it may affect
Max, but not Median) In our tests, we notice that while the
detection performance of both the Top-k and the Random-
k schemes remain the same, the ranking of query anomalies
and the associated number of anomalous dimensions vary
(typically fewer number of anomaly dimensions for Top-k,
as expected); this is shown in the last row of Table V.

As a final validation of this detector, we test the problem
of masquerade detection for (Chair Vs Faculty) (using the
classes alternately as ‘normal’). The detection performance
with Chair (normal) was 94.7% and that withFaculty(normal)
was 97.5%, slightly better than even the ML algorithms in
Table III.

We believe that the good performance of the Top-k ap-
proximation with this detection technique has several practical
implications. First, it indicates that a fast online anomaly
detector can perform well by considering just a few initial
output tuples. Randomized sampling of query results may
not be feasible in all cases, especially for queries generating
hundreds or thousands of output tuples (e.g., due to perfor-
mance constraints), but our results here indicate that accuracy
may not have to be sacrificed in the process of giving up
random sampling. Further, we also believe that the S-Vector
representation scheme and attribute-deviation based anomaly
detection algorithm are quite resilient to attacks designed to
mislead or bypass detection – we argue that it is very difficult
for an attacker to craft queries so that multiple statistical
measurements are controlled – a theoretical result may be an
interesting research problem.

VII. C ONCLUDING REMARKS

In this section we discuss some overall aspects of our
solution, their practical implications and identify key goals
for future research.

Queries: In order to characterize query results using S-
Vectors, we need to express the schema of each query result
in terms of the attributes of the base relations (base schema).
For select-project-join (SPJ) queries on base relations, the
base schema is easily determined. When SPJ queries are
also expressed on top of views, then we employed the view
unfolding technique [35] to determine the base schema. View

unfolding recursively replaces references to a view in a query
expression with its corresponding view definition. For a class
of queries larger than SPJ queries on base relations and views,
it is not clear if the base schema can be determined. For
example, union queries can map two different attributes in
base relations into a single one in the query result, as the
following example shows:

SELECT g.name, g.gpa FROM GRADS g
UNION

SELECT u.name, u.gpa FROM UGRADS u;

In this case, there is no dimension in the S-vector to
accommodate the first attribute of the query result. The sameis
true for computed attributes in results of complex (aggregation,
group-by) queries. To accommodate such cases, we plan to
investigate data provenance techniques [36] and revise the
definition and the use of the S-vector accordingly.

Databases:The framework proposed in this paper assumes
that the underlying database isstatic, i.e., there are no updates.
Although this assumption is true or adequate for a certain class
of databases (e.g., in applications such as census reporting),
we plan to extend our work todynamicdatabases. The first
challenge in this case is to determine if and when updates
shift the boundary between normal and abnormal queries with
respect to the initial database state. If the database instance
is updated significantly, then our training sets and classifiers
become obsolete. Two directions we plan to investigate are:
(a) detect when a re-training of the system is needed, and (b)
whether detecting abnormal activity using stable versionsof
the database is effective for periods between re-training.

Activity Context: In our approach, the context of a user’s
activity is a set of query results generated in the past by the
same user or the group in which she belongs. When a user
generates a new query result, then its S-vector is compared
to the S-vectors representing the query results in the past.We
plan to investigate richer activity contexts and examine their
effectiveness in detecting sophisticated attacks. Such contexts
might include statistics of a user’s session with the database,
temporal patterns of the query results generated by the userin
the past (large results during tax season, many results during
the holiday season) and so on.

Performance: In cases where user queries return a signif-
icantly large number of results, computing statistics overthe
entire query result for anomaly detection might be unaccept-
able from a performance standpoint. The top-k approximation
proposed in Section VI improves performance without sacri-
ficing accuracy. One potential drawback of this approach is
that the queries in the training set might sort the results bya
different attribute or in different order (ascending, descending)
than an otherwise normal user query, thus leading to false
positives. A possible solution to this problem is to choose
one attribute of each base relation as the default order by
attribute. Then, for every query in the training set add a
designatedORDER BY clause that orders the result by the
chosen attribute of the first base relation (alphabetically) used
in the query. When a user query is submitted, the system



submits an additional query with thedesignatedORDER BY
clause and uses this query result for detection.

Although random-k does not outperform top-k in our ex-
periments, we expect random-k to perform consistently for a
wider range of datasets and queries. Of course, a problem
that arises then is how to sample a query result without
computing the complete result, given that RDBMSs follow
the pipelined query execution model. For this hard problem,
we plan to leverage prior work on both SPJ queries [37], [38]
and queries for data analytics in the area of approximate query
answering [39]–[41].

In conclusion, the techniques that we have presented and
analyzed in this paper show significant potential as practical
solutions for anomaly detection and insider threat mitigation
in database systems. Some open research issues still remain–
we aim to develop and present efficient and practical solutions
to these in future work.
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