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Abstract— In a mobile ad hoc network, tracking protocols need
to deal with—in addition to the mobility of the target— the
mobility of the intermediate nodes that maintain a track toward
the target. To address this problem, we propose the MDQT
(Mobility-enhanced Distributed QuadTree) tracking framework.
MDQT employs a static cell abstraction to mask the mobility of
the nodes and provide the illusion of a logical static network
overlaid on the mobile network. MDQT implements this virtual
static network layer in a lightweight/communication-free manner
by exploiting the soft-state principle and the snooping feature of
wireless communication.

Using simulations, we study the effects of the mobility speed
and the percentage of mobile nodes on the performance of our
MDQT framework. We find that even at very high mobility
speeds (50 meters per second), low update rates (1 update per
second), and 100% node mobility, the success rate of MDQT
tracking is above 85% and the latency is comparable with that
of static networks.

I. I NTRODUCTION

Location tracking problem is of great importance in surveil-
lance, security, and information systems. Most of the work
on tracking focus on an environment where all the nodes are
static and only the target node is mobile [4], [5], [17], [20].
Even for this static network setting, the tracking problem is
nontrivial. Flooding based solutions are unscalable as they
impose a large control traffic overhead and devour the network
bandwidth [14]. Centralized solutions where location queries
are answered from a central basestation node are undesirable
performance-wise since they violate thedistance-sensitivity
property: the querier may be closer to the target, but yet still
have to communicate all the way to the central basestation.
Furthermore, distance-sensitivity is required even for correct-
ness of the tracking application as it has been shown that,
for satisfying optimality constraints, the latency with which
an interceptor requires information about the intruder it is
tracking depends on the relative locations of the two: the closer
the distance, the smaller the latency [3]. To achieve distance-
sensitivity, a distributed location lookup directory needs to be
implemented to provide the location of the tracked node to
any querying node in the network [1], [5], [6].

The tracking problem becomes most challenging in the
Mobile Ad Hoc Networks (MANets) setting, where all the
nodes may potentially be moving at any time. Since the
intermediate nodes that maintain the tracks to the target and
that relay protocol messages are also allowed to be mobile,
maintaining a distributed location lookup/tracking directory

over the network is hard, let alone doing it in a bandwidth-
efficient and distance-sensitive manner. We address these chal-
lenges for tracking in MANets with our MDQT (Mobility-
enhanced Distributed Quad-Tree) framework. MDQT provides
efficient location updates as well as distance-sensitive latency.
Our simulation results show that even at very high mobility
speeds (50 meters per second), low update rates (1 update per
second), and 100% node mobility, the success rate of MDQT
tracking is above 85% and the latency is not much worse than
that of static networks. We summarize the key ideas behind
the success of MDQT next.

To implement MDQT, we provide an efficient implemen-
tation of a staticcell abstraction to mask the mobility of
the nodes and present an illusion of a logical static net-
work overlaid on the MANet. This is achieved by mapping
mobile nodes that fall within a geographic area (cell) to
model avirtually static node[7] for that area. We useloose-
synchronizationamong the mobile nodes to implement this
virtual static node model in a lightweight manner. In fact, in
our implementation, nodes in a cell do not explicitly coordinate
at all, and the maintenance of the virtual static node is achieved
in a communication-free manner. In this loose-synchronization
approach, new nodes catch up with the state information of
other nodes opportunistically by snooping ongoing wireless
broadcast communication.

Armed with this overlaid static virtual node layer, we adapt
our earlier work on distance-sensitive tracking [6] in Wireless
Sensor Networks(WSNs) to the MANet domain to embed
a hierarchical in-network tracking structure over the virtual
node layer. In order to maintain the tracking information for
the targets in a lightweight manner, we employ the soft-state
mechanism [9], [15]. Periodic location updates advertisedby
the targets refresh and keep-alive the tracking information at
higher layers of the hierarchy, and the stale tracks are removed
by timeouts automatically. The advantage of the soft-state
approach is that it obviates the need for explicit messages
for handouts among nodes and for removing old tracks, and
hence leads to a simpler and more robust system. We further
optimize the update frequency of our soft-state based track
maintenance by devising anintermittent update forwarding
mechanism, which enables higher level nodes in the hierarchy
to update with exponentially less frequency than those at the
lower levels. Our simulations show that in dense MANets,
our loose-synchronization and soft-state based implementation
achieves good scalability in creating the illusion of a static
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logical overlay to the face of high mobility speeds and low
update frequency.

Another key idea behind the success of MDQT tracking
is the query-forwarding mechanism used for dealing with
the target misses at high speeds. In the high mobility speed
setups a query may arrive to the location indicated by the
tracking structure but the target may have moved away from
there in the meanwhile. To address these cases, the query
forwarding mechanism prescribes restarting the query from
this new location, by leveraging on the distance-sensitivity
of the MDQT lookups. The idea here is that, since the
new location is closer to the target than the original query
location, the forwarded query succeeds with higher probability
in finding the target.

Contributions . Our main contributions in this paper are as
follows:

• We provide a distance sensitive target tracking service,
MDQT, for fully mobile networks.

• We present a loose-synchronization based approach for
maintaining a virtual static cell abstraction for MDQT
over the physical mobile nodes in a communication-free
manner.

• We present a soft-state implementation of the MDQT
lookup directory to keep the tracking framework
lightweight and simple.

• We provide an experimental spectrum study, analyzing
the performance from low speeds and few mobile nodes,
to high speeds and all mobile nodes. We show that
the performance degradation of MDQT is graceful with
respect to the mobility speed, and is not sensitive to the
percentage of mobile nodes.

• We enhance the wireless sensor network simula-
tor Prowler to enable support for node mobility.
Information about this enhancement is available at
http://ubicomp.cse.buffalo.edu/mdqt.

The rest of the paper is organized as follows: Section II
describes the MDQT framework. We discuss implementation
considerations and tuning of parameters in Section III. Sec-
tion IV presents the simulation results and shows MDQT’s
performance in diverse mobility environments. We discuss
optimizations and extensions in Section V. Section VI reviews
the related research and shows how MDQT compares with
these prior work. Finally, we conclude the paper in Section
VII.

II. M OBILITY-ENHANCED DISTRIBUTED-QUADTREE

Here we first describe the DQT structure that MDQT is built
on, and then introduce MDQT operations for location update
and querying. Finally we discuss how the cell abstraction is
maintained as soft-state.

A. DQT structure

MDQT is built on our previous work DQT [6], which
overlays a virtual grid in a field as shown in Figure 1. The field
is partitioned hierarchically, each partition divides a region into
4 sub-regions, which are encoded as 0,1,2,3 corresponding

Fig. 1. MDQT coding with 3 levels

to NW, NE, SW and SE partitions. As such, each smallest
partition is assigned an ID which uniquely identifies a region.
Each sensor node can calculate this logical ID given its
location(x,y)(E.g, via GPS). We use this addressing schemeto
encode the location information of a node in DQT. Figure 1
illustrates the addresses of the nodes in a partitioned region
with 3 partition levels.

DQT maintains a minimal structure. The implication is that
the construction of structure is local and does not require any
communication at all. In each level of partition, a cell (a least
level partition) is assigned as clusterhead of the corresponding
region. The clusterhead at each partition is statically assigned
to be the closest cell to the geographic center of the entire
region. This is to avoid backward links between parent and
children. For example, in level 1 partition, cell 003 is selected
as clusterhead for 00 region and cell 033 is selected as level
2 clusterhead. A cell may belong to different levels in the
hierarchy depending on its location. If a cell is a clusterhead
at level k, it is also a clusterhead at all levels less than k.

DQT is originally designed for static sensor networks, in
this paper we embed DQT over MANet by using the static
cell abstraction mentioned in the Introduction. For the rest of
the paper, we investigate the new problems that arise due to
node mobility in tracking applications.

While adapting DQT to mobile networks, we select the cell
size to be less than half of the node communication range (as
in GAF [16]) in order to ensure that a node in one cell can
reach any node in neighboring cells. This selection enablesus
to use ad hoc routing among cells, which is more suitable for
MANets. (The ad hoc routing among cells is discussed later
in Section III.)

B. Location updates

The target location update event is disseminated following
the logical MDQT hierarchy. Once an advertisement message
reaches an intermediate cell in the hierarchy, it is forwarded
upwards to its parent until it reaches the root (Figure 2).
Different forwarding mechanisms are possible. An immediate
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Fig. 2. Location update causes update of track path: higher level cells update
the location information less efficiently.

forwarding strategy forwards the message immediately after a
cell receives a message. It is effective, but includes unneces-
sary overhead, because some updates may not be needed if the
target moves back and forth in the same cell. Another method-
Incremental forwarding strategy-forwards the message only if
the update causes change of the tracking path upwards. If the
target moves inside a cell, nodes inside that cell updates their
location information as usual, e.g., timestamp of the record.
However, high level clusterheads are unaware of these local
changes. Only if the target passes through cell borders, this
update will be forwarded upwards. This way the forwarding
traffic are reduced because an advertising message stops at
a certain level, however, this causes a problem in mobile
networks: nodes at high levels may move out of their cells
and new nodes moving in are unaware of the event due to the
“shield” of low level cells, which in turn leads to failures in
tracking.

To compromise the overheads in “immediate forwarding”
and the deficiency in “incremental forwarding”, MDQT uses
the “intermittent forwarding” approach. Here intermediate
clusterheads forward their events for each predefined period of
time. In contrast to “immediate forwarding”, in which cluster-
heads at various levels immediately forward their information
to their immediate parents, here cells follow their own update
frequency. Higher level clusterheads update less frequently
while at lower levels, updates occur more frequently. This is
helpful in balancing the load and reducing traffic collisions to-
ward MDQT roots as well. We choose the updating frequency
at every level i as:

fi = f1/2(i−1)

The reason for this selection is that a clusterhead covers
two times length of its children in each dimension, and as
a consequence, it is approximately two times less sensitiveto
node mobility than its children at each dimension.

Fig. 3. MDQT uses query forwarding to track targets.

C. Tracking

Once a query is started from an initiator, it is forwarded to
its immediate parent, and the process continues until finally
the target’s track is found. The query is then pushed downward
following MDQT hierarchy until it reaches the target. More
specifically, when a node receives a querying message, it
performs the following:

• If the cell has no clue of target’s location, it forwards the
query to its parent cell. If the query has already reached
the root, yet the root has no clue of the target, it returns a
failure. A failure may be caused by the incorrect receiv-
ing of messages during forwarding, missing update of
location advertisement, or highly dynamic node mobility.

• If the cell has an advertisement of the target, it points
the query to the corresponding child from which the
advertisement is last received.

• If the query reaches a bottom level of cell, but it finds
out that the target is no longer there, it waits for certain
period of time, then performs a query forwarding.

Query forwarding is an important part of the MDQT track-
ing process. After every forwarding, a query message is closer
to the target than before, which in fact is the essence of our
tracking algorithm. Although the query may fail to find the
target at one round, the target is located somewhere not far
away, and the forwarded query message is more likely to hit
the target within a few hops. Figure 3 illustrates how query
forwarding can keep tracking the target effectively.

Tracking results can be replied back to the querying node
through reversed searching. This operation is symmetric to
the searching of target, hence we do not include it in our
discussion and implementation.

D. Loose synchrony

To maintain the data consistency in a cell, the previous
mobile tracking frameworks VINESTALK [13], GLS [12] and
HGRID [14], used strict synchronization, where when a new
node enters a cell requests for the state information of thiscell.
This causes extra overhead and consumes unnessary network
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bandwidth when all nodes are mobile. We observe that such
strict synchronization for the nodes is not necessary as it
is sufficient for one node in a cell to respond to a query,
while other nodes catch up opportunistically. Considering
the constant changing of topology in our model, the loose
synchrony approach is most appropriate because it avoids extra
traffic in high mobility circumstances where a lot of nodes
move in/out cells.

In MDQT, we loosely synchronize the state of nodes in each
cell through snooping the location update event by utilizing the
nature of wireless broadcast communication. More specifically,
1) when a new node enters a cell and detects an event/query
forwarded/replied by neighboring nodes in the same cell, this
information is inserted as if the event has been advertised,2)
when a record reaches its lifetime, it is deleted, 3) when a
node leaves a cell, the data associated is dropped.

Of course, such lightweight implementation trade-offs the
possibility of failures. Transient data inconsistencies occur
when all the nodes holding the data move out of a cell, while
those newly joined nodes do not have any clue of the data.
In this case, the nodes simply forward the query to the parent
cell for a resolution. If this happens at the root, it becomesa
failure. Other reasons for failure are: a query is forwardedto
an empty cell; a query message is lost due to collisions; or
the number of query forwarding exceeds the maximum limit.

E. Overhead analysis

We analyze the overhead and efficiency in this section. Our
model considers al leveled MDQT field that consists ofn
nodes randomly distributed.

Indexing. The expected location indexing message over-
head isO(sqrt(n)). This is because each advertisement needs
to travelO(2l/2) hops, andl = log(n).

Querying. Assume that the target isd distance away from
the tracking node and moves at speedv, the cost for a query
to reach the target given the assumption that message routing
follows shortest path in message delivery is:

s(d + vt)

where t is the delay from the query message being initiated
to reach the target, ands is the distance stretch factor. Stretch
factor measures distance-sensitivity and implies that thecost
of answering a query for an event should be at most a constant
factor “s” of the distance “d” to the event in the network. We
cannot guarantee distance-sensitivity for each query due to
the hierarchical boundary issue, however we achieve distance-
sensitivity on average. Our simulation results confirm this
claim. Later in the discussion section, we introduce an efficient
method to handle this multi-level boundary problem.

Space overhead. Since each node can be at any level in
the hierarchy, the space required for each node isO(log m),
wherem is the number of targets in the field.

III. I MPLEMENTATION

A. Routing

Here we present the MDQT routing protocol. Many work
have been done in routing from different perspectives includ-

ing energy aware routing [8], [18] and geographic routing
[10], [11]. These work need to maintain clusters or neighbor
list information, however node mobility results in continuous
topology changes and maintaining neighbors table information
is very costly for high mobility environments. Instead MDQT
routes messages in an ad hoc fashion using “polite gossip”.
In this approach, all the nodes in the cell may intend to
act as a relay and forward a received message towards its
destination. However, nodes select a random backoff time,
and are allowed to relay the message only after this backoff
time. If during the backoff period, a node hears any other
node in the cell forwarding the same message, the node
suppresses repeating this message and removes the message
from its sending queue. This way nodes in the same cell
coordinate implicitly, and as a result, duplicate message sends
are reduced, if not completely avoided. Below, we show that
with careful design of application layer backoff timers, wecan
reduce such collisions to an acceptable level.

As mentioned before, MDQT querying operation consists of
two phases: an “upward” phase and a “downward” phase. At
the “upward” phase, messages are forwarded to higher level
cells until they find the track of the target; at the “downward”
phase, messages are passed down to the leaf cells until the real
target is reached. MDQT Routing is performed as follows: If
the forwarding destination (e.g., to its parent) is a neighboring
cell, the node sets the next hop exactly as the destination; If the
forwarding destination is not within one hop distance, the cell
calculates next hop locally by taking advantage of MDQTID
properties. The next relay hop is selected as the closest neigh-
boring cell to the forwarding destination. Therefore messages
follow a cell level shortest path. The resulting routing path
is similar to geographic routing in a sense that they both
follow a relatively short path. Nevertheless, MDQT routingis
more lightweight and superior to geographic routing in mobile
networks as it does not require maintaining a neighbor list
during each move, which is very costly or even impossible
for some high mobility environments.

B. Backoff timer-Application layer

There are two types of backoff timers in our model- a default
CSMA backoff timer and an application layer backoff timer.
These two timers perform different functions in our model:
the default CSMA backoff timer is for reducing collisions
and application layer backoff timer is used for suppressing
the sending of duplicated messages. The application layer
backoff timer should be carefully designed to reduce message
duplication and conflicts in routing. LetTapp denote the
application layer maximum backoff time. If there aren nodes
within the same cell, the joint probability of backoff time
p(t1, t2, ..., tn) can be written in conditional probability:

p(t1, t2, ..., tn) = p(t1/t2, t3, ...tn) ∗ p(t2, t3, ..., tn)

The probability that the restn − 1 nodes can hear the
first node’s transmission and disable their own transmission
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attempts is:

P =

∫ Tapp−Tmsg

0

∫ Tapp

t1+Tmsg

...

∫
p(t1, t2, ..., tn)..., dt2, dt1

The result of this integration is:

P = (1 −
Tmsg

Tapp
)n

Using this formula, we can setTapp appropriately according
to system requirements. For example, assuming there are two
nodes sharing same MDQTID on average and the duplication
of sending is less than 10%, the application layer backoff is:

Tapp ≈ 20 ∗ Tmsg

C. Setting of soft-state parameters

One advantage of our framework is the tunability of the
parameters to achieve better performance in querying cost,
energy and fault rate. The costC includes querying cost and
indexing cost. We analyze parameter constraints and show how
to reduce the cost by adjusting advertising frequency. We use
the following notations in this discussion:

• The source node queries the target at each intervaltq and
the target node advertises at eachta period.

• The average distance(in hops) between the querying node
and target isdq and the average distance for event
advertisement isda.

• The stretch factor s used to measure query-
ing/advertisement distance sensitivity implies that
the cost of the querying/advertising task is resolved by
at most constant factors of the distanced to the target
interested.sq is the stretch factor for querying tasks
and sa for advertisement tasks. In MDQT, a query is
forwarded at the missing point in order to catch up with
the moving target eventually. Sosf is used to represent
the stretch factor of such forwarding effort andtf is the
forwarding waiting time.

Suppose with the target moving speedvt, pf percent of
querying requests need forwarding. We can obtain following
observations:

• The overall stretch factor can be approximately expressed
as:

s = sq · (1 − pf ) + pf · sf ·
df

dq

• The forwarding waiting timetf should be carefully
chosen. Iftf is too short, the forwarding message will
keep bouncing in the false positive loop, causing large
overhead and wasting energy; whiletf is too long, it not
only introduces more latency but also more likely to miss
in next round. Therefore:

ta ≤ tf ≤ tl

Although setting oftf and tf largely reduces traps, we
avoid traps by performing loop detection/cancellation on
receiving each querying message as well. Each query
message has a unique MessageID, which is stored in

TABLE I

PARAMETERS FOR SIMULATION

Topology update frequency 15/s
Data lifetime(tl) 10s
Advertisement frequency(ta) 1/s
Query frequency(tq) 0.22/s
Forwarding delay(tf ) 1s
Application layer backoff(Tapp) 0.3s(max)
Mobility waiting time 0-1.5s
Average density 4/cell
Cell size 100m
Transmission range 250m

event table corresponding to the particular EventID. It
is flushed once the event information is updated through
advertising. A query message avoids looping back to its
child node on witnessing the same querying MessageID
as itself.

In the following we show how to tune the advertising fre-
quency to minimize the overhead. The costC of query-
ing/advertisement within periodT is:

C =
T

tq
· dq · sq · (1 − pf ) +

T

ta
· da · sa +

T

tq
· pf · ta · vt · sf

In order to optimize advertisement timer, we assume that the
new interval becomesλ · ta. With the same assumption, the
cost becomes:

Ĉ =
T

tq
·dq ·sq · (1−pf )+

T

λ · ta
·da ·sa +

T

tq
·pf ·λ · ta ·vt ·sf

The goal is to choose an appropriateλ to minimize the target
function:

λ = argmin(Ĉ − C)

The result ofλ is achieved by following:

λ =
1

2
+

tq · da · sa

2 · pf · ta · vt · sf

IV. SIMULATION

We evaluate MDQT performance and mobility behavior
in Prowler. Prowler is a discrete time, event-driven wireless
sensor network simulator. We enhanced Prowler such that it
can support node mobility. In our enhanced version, nodes’
positions are refreshed at each topology update interval.

The network consists of 256 nodes, uniformly placed with
100 meters spacing initially. We implement a 4-level-MDQT
structure for tracking where MDQTID is achievable in real
time for each node. The transmission power is set to cover
neighboring cells, thus all nodes in neighboring cell are
reachable via single hop. The target node is placed at the
corner initially and the tracking node is placed randomly at
the beginning of each experiment. We investigate the impact
of different mobility scenarios using the following metrics:

• Success Rate. Success rate is used to measure the re-
liability of MDQT tracking scheme with node mobility
and possible message collisions. A tracking is considered
successful if the querying message finally reaches the
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target. Here we only allow at most one query forwarding
in our simulation.

• Average hops. Average hops measure the expected com-
munication cost for the querying of target. In order to
measure the cost, each query message contains a segment
indicating how many hops it has experienced.

• Latency. Latency is an important performance measure-
ment especially for time-critical applications. It is mea-
sured from the starting of a message until it reaches the
target. Failure cases are not counted in calculation.

• Forwarding rate. Forwarding rate measures the fraction of
querying that are resolved through in-network forwarding
operations. Of course, low forwarding rate is desired as
each forwarding causes extra delay and communication
cost.

Every experiment is repeated 10 rounds with 500 seconds
in simulation time for each round, and metrics are calculated
in average. The settings of parameters are listed in Table I.
Node movement follows random waypoint mobility model: a
node randomly selects a point in the field and moves toward
that position with a certain speed; when it arrives, the node
waits for certain period and selects next waypoint. The waiting
time in our simulation is set to be randomly in range [0-1.5]
seconds.
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A. Target mobility only

In this experiment, all nodes are static except the target. The
target is located in the northeast corner at the beginning ofthe
simulation and follows random way point mobility model. The
querying node is placed somewhere around the center of the
simulation area. We compare MDQT with centralized tracking
solution, where both location updates and querying are directly
sent to a centralized server (we set a root cell as centralized
server), and polite-flooding scheme over logical cell layer. In
the polite-flooding scheme, the location event is flooded to
every cell, and a query is forwarded to the target directly.

Figure 4 shows the success rate for different schemes with
different target mobile speed. As comparable to GLS, MDQT
maintains more than 98% percent of tracking success rate
despite of the target movement speed. With aggressive updat-
ing, GLS and MDQT performs similarly for static networks.
Nevertheless, the centralized approach is greatly affected by
target mobility speed. This is mainly due to the increasing
of hops and longer delay it travels before a query forwarding
reaches the server, which leads to more failures for higher
speed targets. Polite-flooding based tracking scheme behaves
even worse due to the longer delay and more collisions (Fig.6).

The results in Figure 5,6,and 7 can be explained as follows:
the average number of hops for tracking a mobile target
increases approximately linearly with the increasing of target
speed (Fig.5); this is mainly because of the linear increment of
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query forwarding that the system spends to catch up with the
target (Fig.7), which in turn causes the increase of average
delay (Fig.6). The increasing of forwarding rate and delay
is approximately linear with respect to mobility speed. This
is because the message is more likely to miss the target
with higher mobile speed, and the miss of target results in
more querying forwardings, hence the increasing of delay and
average hops.

The reason we only see slight differences between MDQT
and centralized tracking in Figure 5 and 6 is that those metrics
are calculated only on those successful queries. With the
increasing number of levels in cell partition, we can expect
larger gap in those performance metrics.

B. Fully mobile networks

An important part of our experiment is to evaluate the
MDQT performance for fully mobile networks, where every
node is able to move. We use the same initialization topology
as section A but vary the percent of mobile nodes. Again, to
ease comparison, we measure the same metrics under random
waypoint mobility model for the querying node in every
experiment. We evaluate the performance using a spectrum
analysis from low mobile speed to high mobile speed and
scale from static networks to fully mobile networks.

We can see from Figure 8 that failure increases when
more nodes become mobile. The success rate is much lower
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than static networks mainly due to: 1) mobility increases the
probability of node isolation and message loss is more likely
to happen when the querying node moves to edges of the
grid (due to the fact that the network tends to be sparse at
edges with random waypoint model); 2) mobility increases the
probability of data inconsistency in a cell. Here the inconsis-
tency refers to the cell emptiness or that although nodes exist,
they hold incorrect information. Figure 9 shows the correlation
between success rate and mobile speed: high speed leads
to low success rate under the same network configuration.
However, after comparing Figure 8 and Figure 9, we observe
that the success rate is more sensitive to the percentage of
mobile nodes than the mobile speed, because query forwarding
partially improved success rate. Nevertheless, even undera
very highly dynamic circumstance (high mobile percentage,
high speed), the tracking success rate remains above 85%.

Figure 10 measures the cost (in average hops) of tracking
under mobile node percentage. The average hops increase very
slowly (almost negligible) for each particular mobile speed
with changing of mobile node percentage. This is mainly due
to the soft-state nature of MDQT structure: mobility does
not change the cell logical hierarchy. On the other hand, the
cost is proportional to the mobile speed (Figure 11): high
speed increases the probability of query forwarding, hencethe
average hops. This also validates our analysis that due to the
static cell layer, the cost is proportional to mobility speed, but
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insensitive to the amount of mobile nodes.

Figure 14 and Figure 15 illustrate the forwarding rate under
different configurations. The forwarding rate increases nearly
linearly with the increase of mobile speed, however, it is less
affected by increasing the percentage of mobile nodes. That
is the reason we see some intersections in Figure 15 where
the mobile node percentage differs slightly. Meanwhile, the
increase of the forwarding rate is the cause of the increase of
the cost as well as tracking delay.

Tracking delay (Fig.12) also demonstrates great resiliency
with respect to mobile node percentage: it is less affected by
increasing the percentage of mobile nodes than mobile speed.
For example, with speed 10m/s, the increase of mobile node
percentage from 10% to 90% only adds to several hundreds of
milliseconds. The large variance of delay with same speed is
caused by the randomness of backoff timers and relatively
small number of repeated experiments. Again, the average
delay increases nearly linearly with the rise of mobile speed
(Fig.13). To sum up, MDQT is sensitive to mobile speed: high
speed results in more chances of query forwarding and thus
higher cost and longer delay, and MDQT is less sensitive to
mobile node percentage due to cell abstraction and soft-state
nature.
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C. Multiple Targets

All the experiments till this point only consider one single
target. The extension to multi-target tracking is straightfor-
ward: MDQT treats every target as a distinct type of event,
which is stored in the cell hierarchy. Hence tracking of
each target uses the same strategy. To show scalability of
MDQT in multi-targets applications, we present simulations
with multiple targets in Figure 16. We set 40% of nodes to be
mobile and the mobility speed is about 25m/s.

As shown in Figure 16 the success rate is impacted slightly,
while the delay, average hops and forwarding rate remain the
same for multiple targets. Note that we use Prowler-a WSN
simulator, which has extremely limited bandwidth and low bit
rate radio. The increasing of bandwidth will greatly reduce
the transmission delay and increase success rate due to: 1) the
time for transmitting messages is reduced; 2) the application
layer backoff timer can be lowered. Our simulations show that
MDQT is scalable to node mobility for tracking applications.

V. D ISCUSSION

Does mobility always make things worse?MDQT ad-
dresses mobility by introducing the static cell abstraction and
masks the impact of node mobility within a MDQT cell. Inter-
cell mobility is handled by query forwarding techniques at
the failure position. While the sensor node mobility causes
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Fig. 16. Tracking performance with multiple targets

overhead in maintaining the soft-state, sensor node mobility
also brings following benefits:

• Load balancing. MDQT is a hierarchical mobility man-
agement framework, high level clusterheads handle more
traffic than lower level cells. This causes load balancing
issue for static networks and this happens to be alleviated
by node mobility in MDQT.

• Information dissemination. When a node moves from
one cell to another, it may carry some information from
the old cell. Such information can be used for tracking.
For example, if a querying does not find the target at a
certain level, nevertheless it may learn from a node newly
moved from a neighboring cell that the target is located
somewhere a short time ago. To utilize this information
we may consider forwarding the query directly to that
place, reducing the communication cost by preventing
propagation of messages to high level parents.

Reducing tracking failures. The tracking success rate in
MDQT is related to factors such as mobility speed, percentage
of mobile sensor nodes, traffic load, as well as MDQT specific
parameter settings for instance location publishing frequency.
Those settings should satisfy the constraints we mentionedin
section III to achieve better performance. We can apply imme-
diate forwarding strategy in location update to improve success
rate by spending more energy and space. The selection of cell
size also influences the tracking performance–proper setting of
cell size depends on the node density and transmission range.
We set MDQT cell size so that every neighboring cell can be
reached via one hop similar to GAF [16].

Handling hierarchical boundary issues. Even though
MDQT achieves distance sensitive latency in average, the
worst case scenario suffers from hierarchical boundaries.A
small move of the target may lead to many extra hops in
tracking and introduce very long delay. This can be improved

by applying a boundary-aware solution. To keep the boundary
solution lightweight, we only need to focus on the most
problematic cases–deep boundaries: for instance, only if the
boundary is level two or above, we query the neighbors across
the boundary before starting the query forwarding process.

Handling node failures. Based on the scales of failure,
node failure can be classified as single node failure and failure
of one or more cells. Single node failure is neglectable in
MDQT, while regional failure may cause routing and storage
failures. Emptiness of a cell due to node mobility has similar
impact in the system as regional failure. Some techniques, for
instance, cell by-passing, or right-hand-rules as in geographic
routing, might be helpful. The study of MDQT performance
against node failure is left for future work.

Optimizations. So far we have not tuned the parameters
for optimization. In our experiments, all parameters are set
statically in Table I, and it is easy to verify that the setting
conforms to those constraints mentioned in section II and III.
The settings can be tuned according to different optimization
purposes: for example, if the purpose is to improve the tracking
success rate, higher advertisement frequency is desired; if
the queries become less frequent, we can reduce advertising
frequency and increase data lifetime to reduce communication
overhead.

VI. RELATED WORK

Hierarchical approaches have received considerable atten-
tion in MANets [2], [5], [13], [16]. Most of these work
are focusing on data processing and routing in static or low
mobility networks. VINESTALK [13] is a recent algorithm for
tracking objects in MANets. Each node is associated with a
Virtual Stationary Automata(VSA) [7], where detected events
are stored. Tracking path is thus maintained by VSAs instead
of real nodes. The cost of finding a mobile object distance
d away takeO(d) and updates to the tracking structure of
moving d distance takeO(d ∗ log network diameter). MDQT
shares similar idea of “virtual nodes”(which we abstract as
a cell) but is lightweight both due to the local construction
of cells and due to the soft-state information maintenance.
In contrast to VINESTALK where nodes simulating a virtual
node have to perform consensus over every input/output of the
virtual node, we observe that loose eventual synchrony can
be sufficient for nodes in a cell for the tracking application.
We observe that it is sufficient for one node in a cell to
respond while other nodes catch up opportunistically. By
adopting this loose eventual synchrony approach, we get away
without the strict replication, synchronization, and consistency
requirements in VSA [7]. Since we avoid explicit update
message exchange operations, our soft-state cell abstraction
is lightweight and simple to implement.

Another closely related work to MDQT is Grid Location
Service(GLS) [12]. GLS is a scalable and distributed location
service structure which divides the global map into hierarchical
grids with increased size at high levels. It selects location
servers at each level based onleast greater IDrules. Queries
are forwarded in the same rule by checking location tables.
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However GLS results in extra overhead because: 1) GLS
periodically broadcasts HELLO messages to maintain the table
of neighbor information such as IDs, locations. 2) Under high
mobility circumstances, each virtual cell keeps “forwarding
pointers” of the nodes moved out of the cell. This not only
creates extra traffic to the system but also degrades the
performance of the system. The success rate in GLS when all
the nodes are mobile drops to 60%. In contrast, MDQT pays
no cost to such maintenance operations and the the success
rate remains higher than 85% even if all nodes are mobile.

Similarly, Hierarchical Grid Location Management
(HGRID) [14] provides a location service for mobile ad
hoc networks. Although HGRID is a grid based hierarchical
structure like MDQT, MDQT differs in many aspects from
HGRID. HGRID uses hard-state approach and handoff-based
location update scheme - when a node moves to a new
grid, a location handoff happens; HGRID focuses on routing
purposes: all mobile nodes need to update their location
servers periodically. In contrast, MDQT uses soft-state and
loose synchrony to maintain targets’ location, requires less
updates and bandwidth yet achieves better success rate in
high speed fully mobile networks; MDQT studies both the
impact of mobile nodes and mobile speed using a spectrum
analysis.

TTDD [17] (Two-Tier Data Dissemination) aims to address
sink mobility. It proactively constructs a grid structure,so
that only the sensors on the grid point need to acquire the
forwarding information. The mobile sink needs to reconstruct
its entire path whenever it moves to a new grid. Flooding
is used in the local cell containing current sink’s location.
Compared with MDQT, TTDD is limited to static intermediate
nodes and the success rate is below 90%, while MDQT allows
intermediate node to mobile and achieves higher success rate.

Y. Zhou et. al proposed a distributed mobility management
for target tracking in mobile sensor networks in [19]. Their
mobility management scheme considers node movement deci-
sions as part of a distributed optimization problem to improve
the quality of target tracking under constraints of energy con-
sumption and link quality. Based on those metrics, a node can
move to another location purposely after selecting the “best”
candidate location. Our framework considers more generalized
cases - uncontrolled mobility e.g., random waypoint mobility,
because intentional movement is often unrealistic.

VII. C ONCLUSIONS

In this paper, we have proposed the MDQT tracking frame-
work for large scale mobile ad hoc networks. Here a “cell”
abstraction is used to dynamically map mobile nodes that fall
within a geographic area to model avirtually static nodefor
that area and implement the virtual static node layer in a
lightweight and communication-efficient manner using soft-
state principle.

Our experiments on the impact of mobility speed as well as
percentage of mobile nodes in terms of success rate, commu-
nication hops, latency and forwarding rate show that MDQT
is an efficient and scalable in-network tracking framework for

MANets. In our future work, we will study the impact of
node density and node failures on MDQT performance using
a spectrum of dense to sparse MANets.
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