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Abstract
Our goal is to develop ‘smart indoor environments’ that
are monitored unobtrusively by biometric capture devices,
such as video cameras, microphones, etc. Such environ-
ments will keep track of their occupants and be capable of
answering queries about the occupants’ whereabouts. In
order to develop a unified model that is applicable across
diverse biometric modalities, we propose an abstract state
transition framework in which different recognition steps
are abstracted by events, and the reasoning necessary to
effect state transitions is abstracted by a transition func-
tion. We define the metrics of ‘precision’ and ‘recall’ of
a smart environment to evaluate how well it tracks its occu-
pants. We show how the overall performance of our smart
environment can be improved through the use of spatio-
temporal knowledge of the environment. A prototype based
upon our proposed abstract framework indicates that inte-
grating recognition and reasoning capabilities substantially
improves the overall performance of the environment

1 Introduction
The goal of our research is to develop intelligent indoor
environments that can identify and track their occupants
as unobtrusively as possible and be capable of answering
queries about the occupants. Such ‘context-aware’ systems
are useful in homes for elderly or disabled, office work-
place, department stores and shopping complexes to larger
arenas such as airports, train stations, etc. While consider-
able research has been done in this area, the distinguishing
features of our approach are:

1. the use of a unified framework for multiple biometric
modalities;

2. the formulation of performance of the smart environ-
ment through the information-theoretic concepts of
precision and recall; and

3. the integration of reasoning and recognition to en-
hance the overall performance of the environment.

For the purpose of user identification, a variety of ap-
proaches ranging from tag-based to those based on
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Figure 1: Biometrics Driven Smart Environment

biometrics exist. Irrespective of size, tag-based method-
ologies employing RFID or others means, are considered
obtrusive, as the individual is expected to continuously
retain them. Biometric modalities like fingerprint and iris
scans, involve a ‘pause-and-declare’ interaction with the
human [18]. However, biometric modalities involving face,
voice, height, and gait, are more natural and less obtrusive
and thus better suited for identification purposes in smart
environments.

The key idea underlying our approach is to view a smart
environment as a probabilistic state transition system.
Each state records the set of individuals who are present
in various zones of the environment. A state transition is
triggered by an event, which corresponds to the detection
of a subject (occupant) in some zone of the environment
through biometric recognition methods such as face or
voice recognition, etc. Each event thus abstracts a biomet-
ric recognition step, and the transition function abstracts
the reasoning necessary to effect state transitions. The



outcome of an event is a set of distance scores indicating
the degree of match between the subject and the candidates
in the biometric database.

Figure 11 shows the overall architecture of a biometric-
driven smart environment. Although figure 1(c) illustrates
a single biometric modality of face recognition, the archi-
tecture is also applicable to other biometric modalities.
For example, zone 1 might use voice recognition, zone 2
might use face recognition, and zone 3 might use height
estimation. However, in all cases the output of a biometric
recognition is set of person probability pairs as discussed
in more detail below. The state of an environment is
expressed in terms of the probabilities of the occupants
being present in the different zones of the environment.
The state information is probabilistic because a biometric
recognizer typically provides a set of scores indicating the
degree of match between the subject and the candidates in
the database. Therefore, in our approach an event abstracts
a biometric recognition step - whether it is face recognition,
voice recognition, etc. - and outputs a set of pairs 〈o, d(o)〉,
where d(o) is the distance score.

The transition function abstracts the reasoning necessary
to effect the state transition for each event. It takes a
state and an event as input, and first maps the distance
scores to probabilities by determining a reduced set of
occupants that could have participated in the event by
a spatio-temporal reasoning process. The next state is
then arrived by assigning revised probabilities to the
occupants in the environment based upon the probabilities
determined from the event. It is not necessary for us to
consider nondeterministic transitions since a state itself is
represented as a set of occupants and their probabilities.

We introduce the metrics of precision and recall in order
to provide a quantitative measure of the performance of
a smart environment. Precision captures how well an
occupant is recognized, while recall captures whether an
occupant is recognized at all. These are complementary
concepts and together capture the overall performance of
a smart environment. The concepts of precision and recall
are standard performance measures in the information
retrieval literature [21], but we have adapted the definitions
to suit our context.

The rest of this paper is organized as follows. The related
work is presented in Section 2; the details of our abstract
framework are discussed in Section 3; the experimental pro-
totype is described in Section 4; and conclusions and future
work are presented in Section 5.

2 Related Work

There has been considerable interest in the subject of smart
environments. The survey paper by Cook and Das [6]
provides a good account of the state-of-the-art. A major
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difference between our proposed approach and others sur-
veyed below is our definition and use of a state transition
framework for abstracting the details of diverse biometric
recognition steps. Also characterized is the performance of
the smart environment in terms of the concepts of precision
and recall.

This paper extends our earlier paper on biometrics-driven
smart environments [17] by integrating reasoning and
recognition. The focus of our earlier paper was on
recognition. In this paper, we show how the integration
of recognition and reasoning can improve the overall
precision and recall. Specifically, we show how spatial
and temporal knowledge can improve overall performance.
This extension has also necessitated some key technical
changes in our formulation of the abstract model, especially
in the definitions of an event and the transition function.
We also present new experimental results in this paper.

We briefly survey closely related efforts and highlight their
main features.

2.1 Location Estimation and Tracking

An extensive survey and taxonomy of location systems for
a ubiquitous computing application is discussed in [12],
while a more recent survey of position location techniques
in mobile systems is outlined in [16]. There exist multiple
approaches to tracking human movement in offices based
on Abstract HMM [4], game theory [7] and Bayesian meth-
ods [9, 19]. Identity estimation and maintenance for track-
ing have relied on RFID tags [7], id-sensors [19] or ap-
proaches involving non-absolute, internally system gener-
ated identity of tracked persons [14].

2.2 Biometrics in Smart Environments

Pentland and Choudhury [18] highlight the importance of
deploying audio-and-video based recognition systems in
smart environments as these are modalities similar to those
used by humans for recognition. Hamid Aghajan et al. [1]
propose a vision-based technology coupled with AI-based
algorithms for assisting vulnerable people and their care
givers in a smart home monitoring scenario. However,
users are expected to wear a wireless identification badge
that broadcasts a packet upon sensing a significant signal
by one of the accelerometers. Gao et al. [10] propose
a new distance measure for authentication in their face
recognition system for a ubiquitous computing environ-
ment which relies on a fusion of multiple views of each
person. Their work focuses on optimizing on a single
modality to improve robustness rather than deploying a
multimodal approach that fuses different biometrics. Hong
et al. [13] discuss structure, operation and performance
of a face verification system using Haar-like features and
HMM algorithm in a ubiquitous network environment.
More recently Bernardin and Stiefelhagen [2] have im-
plemented a system for the simultaneous tracking and
incremental multimodal identification of multiple users in



a smart environment which fuses person track information,
localized speaker ID and high definition visual ID cues
opportunistically to gradually refine the global scene model
and thus increase the system’s confidence in the set of
recognized identities. The improvements of combining
acoustic features and 2D face images for identification of
participants in a smart room environment are discussed
in [15]. Techniques for score normalization, modality
weighting and modality combination schemes during the
fusion of the individual modalities for person identification
in a smart room are featured in [8].

In terms of the focus on the use of non-obtrusive biomet-
rics based recognition and location estimation our work is
similar to [2, 8, 15]. However, in our research, we pro-
pose an abstract framework where in a variety of biomet-
ric modalities can be incorporated in a uniform manner.
Our approach to identity estimation deals with the abso-
lute identity of people across multiple zones of a facility.
However, we attempt to highlight the inherent uncertainty
of automated face recognition by recasting the eigen dis-
tances generated by eigenface algorithm into a probability
distribution of the registered faces, instead of the conven-
tional approach of assigning the value with the least eigen
distance as the matching face. This probabilistic approach
to biometric recognition is one of the key themes around
which we construct our abstract framework for a biomet-
rics driven smart environment.

2.3 State Space Representation

It might appear that a Hidden Markov Model (HMM)
would serve as an elegant basis for representing the state
space. From a HMM perspective, a smart environment with
n occupants and m zones can have mn distinct possible
states. The probabilities are not associated with the states
but with the transitions between them; these transition
probabilities are to be learnt from past behavior or by
simulation [4]. Thus an HMM approach is computationally
more complex due to a state space explosion and the
requirement of a priori probabilities of trajectories.

In our approach, the size of a state is m × n, meaning that
for each of the m zones we record the probabilities of each
of the n occupants being present in that zone. (In the Ap-
pendix, we present a state as an n ×m table.) The transi-
tions from one state to another are deterministic. Therefore,
given any event in a zone, the next state is unambiguously
determined. In contrast with the HMM approach, we do not
need to learn the transition probabilities in order to deter-
mine the next state because biometric recognition (or event)
provides a direct means for effecting state transitions. The
details of our state transition model are discussed in the next
section.

3 Framework

Definition (Smart Environment): An n-person smart
environment is abstracted as a state transition system

(S,E,∆) where S is the set of states labeled s0, s1, . . . sx;
E is the set of events labeled e1, e2, . . . ex and ∆ : S×E →
S is a function that models the state transition on the occur-
rence of an event. The state transitions may be depicted as
follows:

s0
e1→ s1

e2→ s2 . . .
ex→ sx

We shall consider a smart environment as being divided into
a number of zones, each of which may be a region (or a set
of rooms). We include two special zones, an external zone
and a transit zone, for the sake of convenience.

Definition (State): Given n occupants, o1 . . . on and m
zones labeled 1 . . .m, a state sk of the environment is repre-
sented by an m-tuple 〈Z1k . . . Zmk〉 where for 1 ≤ j ≤ m,
Zjk = {〈oi, pjk(oi)〉 : 1 ≤ i ≤ n}. Also, in each state sk

and for each occupant oi,
∑m

i=1 pjk(oi) = 1.

The state of an environment is expressed in terms of the
probabilities of the occupants being present in the different
zones of the environment. The constraint

∑m
i=1 pjk(oi) =

1 indicates that sum of probabilities of any occupant being
present across all the zones in any state equals one. In the
initial state s0, we may assume without loss of generality
that all occupants are in the external zone with probability
1. Given a smart environment with n occupants, m zones,
and x number of events, the total size of the state space is
m×n×(x+1). Thus, the size of the state space is quadratic
in m and n rather than exponential, as in HMMs. In this
paper we model all exit events as entry events into a transit
zone. Hence it suffices in our model to only consider entry
events. An event is essentially an abstraction of a biometric
or feature recognition step performed in the environment.

Definition (Event): Given n occupants o1 . . . on, an (en-
try) event ek occurring at zone j (1 ≤ j ≤ m) at time t is
represented as 〈t, j,D〉, where D = {〈oi, djk(oi)〉 : 1 ≤
i ≤ n} and djk(oi) is the biometric distance of an occupant
oi from the detected subject at zone j in event ek.

As noted earlier, an event is an abstraction of a recogni-
tion step. For simplicity, we assume that events happen se-
quentially in time, i.e., simultaneous events across different
zones are ordered arbitrarily in time. That is, the entry of
an occupant oi into zone zi and occupant oj to zone zj at
the same time t can be modeled as oi before oj or oj before
oi.

Definition (Transition Function): ∆ : S × E → S,
maps state sk−1 into state sk upon an event ek = 〈t, j,D〉
occurring at time t in zone j, where D = {〈oi, djk(oi)〉 :
1 ≤ i ≤ n}. Let sk−1 = 〈Z1k−1 . . . Zjk−1 . . . Zmk−1〉
and Zjk−1 = {〈oi, pjk−1(oi)〉 : 1 ≤ i ≤ n}. Then ∆
determines state sk = 〈Z1k . . . Zjk . . . Zmk〉 as follows:
Let xi = 1− pjk(oi). Then,

Zjk = {〈oi, pjk(oi) + xi ∗ pjk−1(oi)〉 : 1 ≤ i ≤ n}

Zlk = {〈oi, xi ∗ plk−1(oi)〉 : 1 ≤ i ≤ n},

for 1 ≤ l ≤ m and l 6= j



The transition function maps a state sk−1 to a state sk

upon an event ek occurring at zone j. For zone j, we sum
the new probability pjk(oi) for an occupant generated by
event ek with the complement of the new probability value
1 − pjk(oi), apportioned by a factor of the existing proba-
bility pjk−1(oi). In the event of a revision, there might be a
violation of the constraint that the sum of probabilities for
any occupant across all zones equals one (

∑m
i=1 p(oi) = 1).

To restore adherence to this constraint, for each occupant
oi, we apportion to the probability of oi being present in
each zone l 6= j by redistributing the complement of the
new probability value, 1− pjk(oi), in the ratio of the prob-
ability value in existing state plk−1(oi).

3.1 Spatio-Temporal Reasoning

The above transition function ∆ is defined in terms of
pjk(oi), the probability of occupant oi at zone j in state sk.
Since an event ek only provides distance scores, we will
now show how pjk(oi) is defined in terms djk(oi). The key
idea is to determine a reduced database of possible occu-
pants who could potentially be detected in event ek. The
basic observation underlying the formation of the reduced
database is that the occupants who could participate in an
event at a particular zone are those that are present in the ad-
jacent zones. Temporal information from schedules, which
gives the known absences of occupants, can be used to fur-
ther reduce the database. In our earlier paper [17], the map-
ping of scores to probabilities was carried out inside the
biometric recognizer, which made use of a fixed database
of possible occupants who could potentially be detected at
any event. As a result, the probabilities obtained were much
more conservative.

The use of reduced databases to compute probabilities sub-
stantially improves the performance of the smart environ-
ment. This point will be illustrated in section 4 through our
experimental results. For example, consider an empty facil-
ity and suppose an occupant moves from the external zone
to the entry zone and then on to an internal zone. While all
occupants in the database are candidates for the entry event,
the candidates for the internal event are only those that are
detected with nontrivial probability at the entry event (say,
greater than some threshold).

We incorporate the spatio-temporal reasoning in a function
f : State × Event → Database, and show how f is
defined. The function f can be defined in terms of two aux-
iliary functions fsp and f tem which encapsulate the spatial
and temporal reasoning respectively:

f(s, e) = fsp(s, e)− f tem(e)

For a state sk−1 and event ek, the spatial function
fsp(sk−1, ek) returns a subset, dbsp

k , of occupants who
could be participate in event ek based upon the knowledge
of occupants in adjacent zones. The temporal function
f tem(ek) returns another subset, dbtem

k of the occupants
who cannot participate in event ek based upon the prior
knowledge of occupants’ absences as given in the daily
schedule. Thus the difference of these two subsets yields a

reduced database dbk = dbsp
k − dbtem

k .

Spatial Reasoning In general, spatial knowledge may in-
clude the zones of occurrence of events, room adjacencies,
layouts, distances, etc. For example, with reference to
figure 1(a), the set of candidate occupants corresponding to
a new entry event in zone 1 (entry/exit zone) is equal to the
current set of occupants in zone 6 (external zone) or zone
2. Similarly the set of candidate occupants corresponding
to a new exit event to zone 6 (external zone) is equal to the
current set of occupants in zone 1 (exit/entry zone). We
assume a thresholding function, thresh(s, j), which takes
a state and a zone and returns the set of occupants with a
probability above a certain threshold, say 0.5, in a partic-
ular zone. (This value could also be a parameter if need be.)

In the case of internal zones (2, 3, 4, 5), their candidate set
is the union of candidate sets from their respective adjacent
zones. For this purpose we define a function spatial(s, j),
for a given layout of rooms, as follows:

spatial(s, 2) = thresh(s, 1) ∪ thresh(s, 3)

spatial(s, 3) = thresh(s, 2)∪thresh(s, 4)∪thresh(s, 5)

Now we can summarize the spatial reasoning as follows:

fsp(s, e) = let e = 〈t, j,D〉 in spatial(s, j) end

Temporal Reasoning Temporal knowledge of the presence
or absence of occupants in the facility based upon a priori
information, as given, for example, in their daily schedules.
This information can be applied to the framework to narrow
the candidate set of occupants. We illustrate for the case
when the schedule of absence of occupants for each day is
given; the case for the presence of occupants can be defined
in a similar manner.

Assume that we have a schedule of absences given as a
relation absent(Start, End,Occupants). For example,
absent(9:00, 13:00, {o1, o7}) could denote the absence of
occupants o1 and o7 from 9 am to 1 pm. Then temporal
function can be defined by:

f tem(e) = S ← e = 〈t, j,D〉 ∧
absent(start, end, S) ∧ start ≤ t ≤ end

f tem(e) = {} ← e = 〈t, j,D〉 ∧
∀(s, e) [absent(start, end, S) → (t < s ∨ t > e)]

Although we have given the absent relation with start and
end times taking on definite values, we can generalize this
approach so that these timings follow a distribution. We
expect that this distribution could be learnt by the smart
environment from its observation of the behaviour of the
occupants over a period of time.

Thus, given a state sk−1 and event ek, the reduced database
of occupants is given by the f(sk−1, ek). We postulate a
function g : Scores×Database→ Probabilities, which
determines the probabilities corresponding to the reduced



database. For this purpose, we make use a standard def-
inition from Govindaraju’s earlier work [3, 5] in order to
define the function g.

3.2 Precision and Recall

We now define the concepts of precision and recall for
a smart environment. These are defined in terms of the
ground truth, which, for a given input event sequence, is
a sequence of states of the environment wherein the pres-
ence or absence of any occupant in any zone is known with
certainty (0 or 1). Precision captures how well an occupant
is recognized, while recall captures whether an occupant is
recognized at all.

Definition (Ground Truth): Given n occupants
O={o1 . . . on} and an event sequence e1 . . . ex,
then the ground truth is the sequence of states
g1 . . . gx where each gk = 〈T1k . . . Tjk . . . Tmk〉 and
Tjk = {〈oi, qjk(oi)〉 : 1 ≤ i ≤ n ∧ qjk(oi) ∈ {0, 1}}.
Also, 〈oi, 1〉 ∈ Tjk → 〈oi, 1〉 6∈ Tlk, for all l 6= j in state
gk.

Given a zone of a state, the precision for that zone of the
state is defined as the average probability of those occu-
pants that are present in that zone of the state as given in the
ground truth. The average precision across all zones (where
at least one occupant is present as per the ground truth) is
the precision for the state, and the average precision across
all states is the precision for a given ground truth. Finally,
the average across multiple ground truths is the precision of
the smart environment.

Definition (Precision): Given an environment with m
zones, n occupants O = {o1 . . . on}, an event sequence
E = e1 . . . ex, a ground truth G = g0, g1, . . . gx, and state
transitions S = s0, s1, . . . sx. We define the precision, π,
with respect to G as follows:

Let πjk = ajk/bjk, where

ajk =
∑
{pjk(oi) : 1 ≤ i ≤ n ∧ qjk(oi) = 1}

bjk = |
∑
{oi : 1 ≤ i ≤ n ∧ qjk(oi) = 1}|

Then πk =
m∑

j=1

πjk/m, and we define π =
x∑

k=1

πk/x.

Now, given a set of ground truths {G1, G2, . . . Gt} with the
corresponding precisions {π1, π2, . . . πt}, the precision of
the smart environment, Π =

∑t
l=1 π

l/t.

For a given ground truth, state and zone, we define recall
with respect to a threshold θ as the ratio a/b, where a is the
number of occupants of that zone with probabilities greater
than θ and who are present in the ground truth, and b is the
number of occupants who are present in the ground truth
for that zone. The recall for a state is the average of the
probabilities across all zones where at least one occupant is
present as per the ground truth. The average recall across

all states is the recall for a given ground truth, and the aver-
age across multiple ground truths is the recall of the smart
environment.

Definition (Recall): Given an environment with m
zones, n occupants O = {o1 . . . on}, an event sequence
E = e1 . . . ex, a ground truth G = g0, g1 . . . gx, and state
transitions S = s0, s1, . . . sx. We define the recall, ρ, with
respect to a threshold θ as follows:

Let ρjk = ajk/bjk, where

ajk = |
∑
{oi : 1 ≤ i ≤ n ∧ qjk(oi) = 1 ∧ pjk(oi) > θ}|

bjk = |
∑
{oi : 1 ≤ i ≤ n ∧ qjk(oi) = 1}|

Then ρk =
m∑

j=1

ρjk/m, and we define ρ =
x∑

k=1

ρk/x.

Now, given a set of ground truths {G1, G2, . . . Gt} with the
corresponding precisions {ρ1, ρ2, . . . ρt}, the recall of the
smart environment, R =

∑t
l=1 ρ

l/t.

As it is clear, the recall is inversely proportional to the
threshold, θ, since lowering the threshold will result in
more occupants being identified. This figure is generally
arrived at experimentally for a smart environment. A
reasonable choice of θ is 0.5, and this is also the value
that we adopt in our experiments. In the above definition,
the recall was defined zone-wise. An alternative approach
is to disregard the zones while taking the ratio; doing so
would increase the overall recall. Our definition gives
due importance to zones, and hence is a relatively more
conservative.

4 Evaluation

We have developed an experimental prototype embodying
the ideas presented in this paper. Figure 1(a) illustrates a
6-zone smart environment with 25 occupants who are mon-
itored by video cameras. Although our abstract framework
is independent of the details of any particular biometric
modality, we illustrate our concepts in terms of face recog-
nition. Automated face recognition is yet to attain any
comparable levels of robustness as that of humans. Factors
such as viewing angle, distance, background clutter, light-
ing spectrum, intensity, angle and diffuseness of lighting,
differences between posed photographs and spontaneous
expression can cause fluctuations in the performance of
computer vision based on statistical classifiers [11]. Our
prototype is based upon OpenCV’s [22] implementation
of the eigenface algorithm [20], which provides a basis
for a simple though not robust implementation of face
recognition.

Our experimental prototype collects sample face images
of the 25 occupants of an office facility and pre-registers
them in a training database. The fixed cameras deployed in
each zone detect the presence of occupants as they move
through the zones and verify the face images extracted



from the video against the database. Simultaneously, a
height estimation module determines the height of the
moving contour of an occupant (which corresponds to the
actual height of the occupant) by calibrating it against
the known height of the topmost point in the view of the
corresponding camera.

In order to demonstrate the benefits of applying spatio-
temporal reasoning, we performed four separate experi-
ments on the same underlying database of 25 occupants and
ground truths. In the first experiment, no spatio-temporal
reasoning is performed and the distance scores generated
by eigenface are cast into probability values directly. In the
second experiment, spatial reasoning is performed so that
the database of occupants that is used in determining prob-
abilities varies for each event. In the third experiment we
observe the database reduction achieved by incorporating
reasoning based on height estimation. The effect of using
height estimation is similar to spatial reasoning and it helps
to further reduce the database of possible occupants who
could be detected at any event. In the final experiment, spa-
tial reasoning in conjunction with height estimation is per-
formed for achieving optimal database reduction.

Figure 2: Precision

Figure 3: Recall

Figures 2 and 3 illustrate the performance improvements in
precision and recall as a result of using spatial reasoning
and height estimation seperately and in conjunction.
The two graphs show the precision and recall results

for a sequence of 18 events. Figure 4 shows the overall
improvement in performance, by presenting the average
figures across all states. Although we have not incorporated
temporal reasoning in these experiments, it should be clear
that it would further enhance the precision and recall, as
temporal reasoning would help to further narrow down the
database of possible occupants.

Figure 4: Overall Improvement

The prototype we have developed can be extended to incor-
porate other biometric recognizers in a similar manner. For
example for voice recognition, voice samples of occupants
are pre-registered in a database instead of face image
samples. The output of the voice recognizer is again a set
of person probability pairs. In this manner, the different
biometric recognizers are interfaced in a uniform way with
the rest of the system.

5 Conclusions

We have presented a novel framework using state transi-
tions for non-obtrusive biometric-based indoor smart en-
vironments that are capable of identifying and tracking its
occupants. We believe that our framework provides an ef-
fective abstraction of a smart environment and serves as an
elegant basis for integrating various recognition and reason-
ing capabilities. The main contributions of this paper are as
follows:

1. A unified framework based on state transitions where
recognition based on different biometric modalities are
abstracted as events and the reasoning necessary to
effect state transitions are abstracted by a transition
function.

2. A characterization of the performance of the smart en-
vironment using the information-theoretic concepts of
the precision and recall.

3. A demonstration of the improvement in the perfor-
mance metrics by integrating reasoning and recogni-
tion.

We plan to enhance our current prototype by incorporating
a variety of other biometric recognizers involving gait,



voice, etc. and fuse two or more of such biometric modal-
ities to enhance the overall performance of recognition.
We also intend to incorporate additional spatio-temporal
reasoning based upon declarative knowledge of the
environment as well as the occupants to seek further
improvements in the performance of the smart environment
in the long run.

Another technique to enhance the overall performance is
that of ‘back-propagation’ of information through previous
states. Once the smart environment is able to confirm the
identity of an occupant with certainty, this knowledge can
be propagated to all previous states in which this occupant
was detected. We believe that the combination of spatio-
temporal reasoning together with back-propagation would
be crucial to achieve satisfactory performance as we scale
up the occupant database.
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