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Abstract. We investigate the problem of finding a fast and resilienppgation
topology and propagation schedule for worms and similacodds, given that
the malcode knows a little more information about the tardban just the IP
addresses. Resiliency means that the malcode is still alpiopagate to a large
expected number of targets even when some targets are ectabfe.

We first show that, under a moderately general network mabelproblem of
optimizing propagation time iINNP-hard. This fact justifies the need for a refine-
ment of the network model, which we present next. In the rdfinedel, when all
nodes are infectable we present an optimal propagatioridgpoNe also show
that for every preemptive schedule there exists a non-grgeenschedule which
is just as effective. This fact greatly simplifies the optiation problem.

With the presence of uncertainty (some targets may fail tofeeted with some
given probabilities due to network errors, security pascle¢c.), there is a natural
trade-off between the expected total infection time andettpected number of
infected targets. We investigate this trade-off by degvihe optimal expected
number of infected nodes and the corresponding propagetmiogy. Next, we
give a propagation topology and schedule which can redueénfection time
significantly while keeping the expected number of infeciedes exponentially
close to optimal.

To the best of our knowledge, this work is the first in the ttere to formulate
and address the aforementioned trade-off, and also thatimrfi¢ime optimization
problem on a formal basis. We expect our problem formulatemd solutions to
have applications in similar application-level sourcedgicast problems, such as
ones in P2P and overlay networks. Last but not least, ounftations leave open
a number of interesting and challenging problems.

1 Introduction

Since the first Internet worm incident in 1988]10], networgrms have evolved con-
siderably. Current worms are very speedy and destructivgeing a major problem
to security researchers. The spread of worms is often famiginto render existing
sighature-based anti-virus programs and intrusion detesystems useless. The scale



and scope of the worms’ potential destructive impact posewseproblems not only for
local organizations or even for a single country, but alsdHe global Internet commu-
nity (the larger the scale of the Internet and the more popoiae computing platforms
become, the more costly and more dangerous worms will be!).

In fact, the recent years since 2001 have arguably been fdergage of worms.
Multiple varieties of worms have appeared and brought wagaet surprises to the Inter-
net community, including CodeRed |19], Nimda, Slappér tammer[[1l7] and Witty
[24]. Consequently, researchers have spent a considemaident of effort to study
worms’ mechanics and dynamics, such as modeling the dysanfiievorms [9 28],
monitoring and detecting worns[31], developing automatedm containment mech-
anisms|[[211_20, 30], simulating worm traffic ]14], routing mts [32], etc.

Most of the aforementioned works focused on random-scgmadmms. To the best
of our knowledge, very few studies have investigated hygiithl yet potentially super-
fast worm scenarios. Staniford et al._[27] were the first tegtigate this kind of hy-
pothetical scenario. They later elaborated on a specifienniostance called “Flash
worm” [26], so named since these worms can span the enticegtisle population
within an extremely short time frame. (Our paper is inspiogd2€,[27]!) As a matter
of fact, fast worms/malcodes no longer just hide in the tetcal domain. The UDP-
based Slammer worm spread at an unprecedented rate: 90%cepsible population
within 10 minutes([118]. Witty infected 110 hosts within 1@&sads. A super-fast worm
is now a very real and practical possibility!

Studying potentially super-fast worms/malcodes is fulitbr a variety of reasons.
Firstly, a sense of the doomsday scenario helps us prepatesfasorst. Secondly, they
can be used to assess the worst case performance of comaiefenses. Last but not
least, efficient broadcasting is a fundamental commurmingtiimitive of many modern
network applications (both good and malicious ones), iticlg botnets’ control, P2P,
and overlay networks. For example, since the control of thtedt is gained through
efficient broadcasting [16], both the attacker and the systealysts strive to have the
most efficient and resilient strategy. Thus, studying wonwppgation helps discover
improved solutions to security threats in network enviremts, both for defense and
counter-attack purposes.

There are several major challenges to designing and dewuglspper-fast worms.
Firstly, the victim scanning time must be minimized or evémimated because heavy
scanning traffic makes worms more susceptible to being teeteand scanning traffic
potentially self-contend with propagation traffic, resdtin slower propagation speed.
Various stealthy scanning techniques can be used as amaditerto amass information
for the attacking hour. Secondly, the collection of victiddeesses is quite large. For a
population of 1 million hosts, for example, the IP addrestyBquires roughly 4MB (for
IPv4). This much data if integrated within each worm instaand transmitted without
an efficient distribution scheme will severely impact theesphof propagation. Thirdly,
making the worm resilient while maintaining its swift effés challenging. The list of
vulnerable addresses may not be perfect. Some of the notteslist might be down or
no longer vulnerable. At and during the time of propagatsmme intermediate nodes
might be patched and the worm instance is removed. Morepaekets carrying the
worm code may be lost, leaving the targets uninfected. Ifr@infacted target is close



to the initial source in the propagation tree, all sub brasdh the propagation tree will
not be infected. In the absence of more sophisticated anolpty time-consuming
mechanisms (such as timeouts and retransmissions), o inaige to reduce the num-
ber of levels in the tree and let the source (usually guaeahte be infected) infect
many targets directly. This burdens the initial source nst®vs the worm down, and
thus makes it much more prone to being detected. Last buteast,|computational
and communication resources at the source and targets ralatlygaffect the worm'’s
speed. The Flash worm described by Staniford [26] requinemisial node that can
deliver 750Mbps. Compromising a host with that much bantlwday not always be
an option. A natural question that follows is whether tha@ker can create the same
or similar effects as flash worms with limited resources . sTaper will answer this
question in the affirmative.

Consequently, designing a worm propagation topology ahddde that provides
both resiliency and time efficiency is an important and @rajing problem. This paper
aims to investigate this problem. Specifically, we will agisl the following questions:

— Suppose the worm writer has decent estimates of a few pasasreffecting the
worm'’s speed, such as end-to-end delays and up-/down-éindwidths of the in-
tended targets, how would he design the worm transmissfmidgy and schedule
to accomplish the task as fast as possible?

— Furthermore, many real-life “glitches” may make some ttggainfectable. For in-
stance, some nodes may have their security holes patcheayosimply be down,
and worm packets may be lost. If the worm writer has some astirof the in-
fectability probabilities, how will this knowledge be ustdmake the worm more
resilient to the glitches?

— There is an inherent trade-off between the expected prdpagime (efficiency
and the expected number of infected targegsiliency. To be more resilient, some
redundancy must be introduced. For instance, because sodemay fail to
infect another node, we may need to have several “infection paths” freto w on
the propagation topology. Unfortunately, redundancyeases propagation time,
hence necessitating the trade-off. Two related questiansviv formally define
are: (a) how to design an efficient worm given a resilienceshold, and (b) how
to design a resilient worm given an efficiency threshold.

We will not be able to answer all the questions satisfagtardbwever, we believe that
our formulation and initial solutions unravel some layefrsamplexity of the problem
and open a door for further exploration. Note that, the afemetioned trade-off is not
just a by-product of the worm propagation problem. Efficimmd error-resilient broad-
cast is fundamental in most network applicatidri< [3,[23Hs\wever, even though the
objectives of efficiency and error-resiliency are simitéie operating constraints are
very different between our problem and application-layeglcast problems.
Our main contributions are as follows:

— We first show that, under a moderately general network mdHelproblem of
optimizing propagation time iNP-hard. This fact justifies the need for a refined
yet still realistic network model, which we present nexttdrasimulation results
further validate the refined model.



— In the refined network model, when all nodes are infectabkepresent an opti-
mal propagation topology and schedule. We shall show tlispidssible to devise
worm propagation topologies and schedules with infectiom teven shorter than
the Flash worms, provided that the worm designer has decestsgs of a few net-
work parameters of the targets. Moreover, it is also possibtetain the swift effect
of Flash worm when starting from a root node with much lessibadth capacity.

— We also show that for every preemptive propagation schedelea node can in-
terrupt the transmission to a target, starting transmisgimther targets before re-
suming the initial transmission), there is a non-preengmishedule (namely each
transmission is not interrupted until it is finished) whishjust as good. This fact
greatly simplifies the optimization problem. However, ttésult does not apply to
transmission processes with interactive communicatidwéxen two ends such as
the 3-way handshake in TCP. We will only consider UDP malsddéhis paper.

— Under uncertainty, i.e. nodes may fail to be infected witmeaiven probabilities,
we investigate the trade-off between the expected infediine and the expected
number of infected targets. We derive the optimal expectaudber of infected
nodes along with the corresponding propagation topologyth¥n give a propaga-
tion topology which can reduce the infection time signifitamhile keeping the
expected number of infected nodes exponentially close timap

The rest of this paper is organized as follows. Sedilon 2vatgs and formulates
the problem in a rigorous manner, including the descriptibour network model. It
is shown that the optimization problem on a simple networldetas alreadyNP-
hard, justifying a further refinement of the network modéhjeh is studied in Section
B in greater depth. Secti@h 4 presents our simulation sséctioflb discusses some
related works and future research directions.

2 Problem formulation

2.1 Network model

In order to address the above questions rigorously, we firstira formal model cap-
turing various pieces of information about the underlyirgwork. The most general
network model is the exact topology of the Internet itseléng with precise infor-
mation about routers, links, bandwidths, delays, conviggtjueue lengths, link/node
error probabilities, etc. However, a network model whicéuases complete knowledge
of the Internet is both unrealistic and not very useful for purposes.

Practically, although there has been a recent surge ofrdsea measuring many
topological properties of the Internét[15.1 L3] 28, 25], pdete information is still out
of reach, especially when measured with end-to-end meaore Mhportantly, such a
general model makes the problem very complex to the poinbbbaing tractable. To
illustrate this point concretely, we will show that our pleim defined on a much less
general network model is alreadyP-hard. Moreover, the description of an encom-
passing network model takes so much space that transmiittimauld certainly slow
down the worm propagation, defeating the purpose.



Fig. 1. A formal network model

A good network model has to lvealisticandmanageablelt should berealistic so
that solving our problem on this model gives a good approtiomaof what actually
happens in the real-world. It should b®nageabléi.e. not too complex to the point of
being useless) so that interesting and useful problemsedefined and solved on this
model. We present a candidate for such network models irséugon.

Consider the situation where there ardnosts, or nodes, and nodg is initially
infected with the worm. The objective is to devise a propagetchedule and topology
for the worm to infect the other nodes subject to constrambse defined.

For each node, let r) andr{® denotev’s up-link and down-link bandwidths,
respectively. (For instance,may be connected to the Internet with an ADSL service.)
When the up- and down-link bandwidths are equal, we tjsto denote this band-
width. The effective bandwidth from nodeto nodew is thenmin{r{", 7" }. Figure

@ roughly illustrates our network model.

We assume that node (i.e. the worm writer) knows other nodes’ bandwidths,
via some sort of educated guess, pre-infection data gathen end-to-end bandwidth
measurement. The task af is to devise the best propagation schedule making use of
this knowledge. We will be more specific about our optimizatbbjectives later.

The capacity of the network core is assumed to be sufficidattye so that nodes
can communicate with each other simultaneously up to thaitable bandwidths. This
assumption is justified by two facts: (i) the total amountraffic sent by the worm is
relatively small compared to the Internet core’s capaeitigreas the Internet backbone
is often lightly loaded (around 15% to 25% on average) dues&r-provisioning([2P?],
and (ii) when some of the worm'’s packets are lost, our regilgopagation topology
helps alleviate the problem. Note that our worm does notiggascanning traffic. This
significantly reduces the traffic intensity as compared taloen-scanning worms. In



fact, using the propagation topologies presented in thessetions, we have calculated
the total worm traffic at any given time in the network to be atstl600MBs or even
less than 10MBs.

Let L,,, denote the propagation delay from nod¢o nodew. Let L denote the
average delay. The worm size is denoted®y This can roughly be understood as the
number of bytes of the worm’s machine code. A somewhat sydatiet to notice is
that sophisticated propagation mechanisms might incrdasklost often, thoughiv/
should be a constant independentiof

Beside the actual code of siZ&, the worm must also transmit a fixed number of
a bytes per target nodes. Each of these “blocksadiytes contains the address of
a distinct target nodel(bytes for IPv4 and 6 bytes for IPv6), and perhaps additional
information about distinct target nodes such as the up- antheink bandwidths and/or
end-to-end delays from the node to other nodes in the netwbrkke W, a depends
on n theoretically. For example, to addressnodes we will need at leasgn bits.
However, in practice we can safely assume thét few bytes) is much less thait (a
few hundred bytes). Lastly, Igtbe the probability that a randomly chosen target is not
infectable. Nodes are assumed to be infectable with incipemprobabilities.

To clarify the use of the above parameters, let us considgieal worm infection
scenario. Starting fromy, which keeps a list of addresses and other information about
the targets (bandwidths, delays), the worm picks out a swbsetarget nodes to infect,
along with a transmission schedule for infecting these aocBerthermorey, will give
each node in S a setS, of targets fow to infect on its own. This way, upon receiving
the listS,, nodev can start infecting nodes if}, using the same algorithm. In the mean
time, vy and other nodes i which were infected before can also start their infection
simultaneously. The process is completed when the lastttaggle is infectednfection
timeis the amount of time some worm traffic is still present in teénork.

There are several natural optimization objectives whifécathe way nodes choose
subsets of targets to infect and subsequently the infestibedule. For example, we
may want to minimize the infection time subject to the comistrthat at least 90% of
targets are infected. With the presence of uncertainty fi.¢¢ 0), we may want to
maximize the expected number of infected targets giveneshtuid on the expected
infection time. Each infected nodewhich is delegated with a subs€&} of targets will
use the same algorithm as the rogtfor further infection. Thus, if we intend to make
use of bandwidth and/or delay knowledge, this informatidhhvave to be passed to
along with the addresses of nodessSin This explain why the parametercontains not
only the size of a target’s address, but also some additloytak representing further
information about the target.

2.2 Rigorous problem definitions

We can use a directed acyclic graph (DAG)= (V, E)) to model the way nodes choose
subsets of targets to infect. The vertex Betonsists of all target nodes, including.
There is an edge fromto w if v (after infected) is supposed to infeect Since we do
not need to infect an already infected node, a DAG is suffidiemodel the infection
choices. We refer to this DAG as tivdection topologyObviously,ug has in-degres;
we thus refer tayy as the “root” of the infection topology.



Consider a node in the G. Let S, be the set of all nodes reachable from nede
via a directed path. Clearly,, is the subset of targets thatvas delegated the infection
task to. (Note that, for distinct nodesandw, S,, andS,, might be overlapping if we
introduce redundancy to cope with infection failures.) Noansider a parent node
of v, namely(w,v) € E(G). Nodew is expected to infect and givev the list.S,,.
Thus, each node must know how to effectively compute (in the piece of catigthe
subgraph of7 which consists of all nodes that can be reached franThe subgraph
will contain information abou§,, for all “children” v of w.

It is not sufficient for nodes to make infection decisionsduhen the infection
topology alone. The second crucial decision for a nettemake is to come up with an
infection schedul& infect nodes irf,, (i.e. in which order the children nodes must be
infected). If nodes can regulate their transmission ratesdertain degree, the schedule
can even be preemptive.

Note that, even though the root can presumably pre-competentire infection
topology and transmission schedule for all nodes in theltgyogiving this pre-computed
information to each target requires a large amount of ddtar¢ter £2(n?)) to be trans-
mitted, which considerably slows down the worm . Hence, wlieamly look at worms
whose codéV is capable of computing its own infection topology and sehediven
only the list of targets.

At this point, we are able to formally define our problems. Weem aims to infect
the largest number of nodes in the fastest possible timesel'hgo objectives form
an intrinsic trade-off. The two problems defined below cgpend to optimizing one
objective while the other remains as a threshold constraint

Problem 1 (Minimum Time Malicious Propagation — MTMP) Given alower-bound
threshold on the expected number of nodes to be infecteda finapagation topology
and the corresponding propagation schedule minimizingettpected infection time.

Problem 2 (Maximum Expansion Malicious Propagation — MEMP) Given an upper-
bound threshold on the expected infection time, find a prapag topology and the cor-
responding propagation schedule maximizing the expecieter of infected nodes.

In this paper, we will focus on the first problem and leave #osd problem open
for future research. The generatrmp problem when the latencies are not uniform is
NP-hard as shown in Theordh 1 (see AppeldiX A.1 for a proof)s Tésult justifies a
further refinement of the model.

Theorem 1 When the latenciek,,, are not uniformmtmp is NP-hard even fop = 0

2.3 A propagation topology revisited

In this section we revisit the 3-level tree infection scheofiea Flash Worm[[26] in
order to illustrate the ideas and problems discussed aBayard2 depicts thimfection
topologyof this scheme, which is a directed 3-level tree whose rabeisourcey,. The
source first infectsn intermediate nodes (fromy to v,,), each of which continues to
infect K’ other nodes (in total, infect nodes fram, 11 tov,,—1). Theinfection schedule
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Fig. 2. A 3-level tree infection topology of a Flash Worm

was not provided in the original paper, but for our purpose,can assume a parent
node sends the infecting packets to its children in seqaleriiler.

In this example, to illustrate the use of our network modebssume the source has
the same bandwidth as the other nodes, and the up- and dokvbahdwidths are the
same for all nodes, and are equartd-inally, as in the original example, the pairwise
end-to-end delays are the same, denoted.bWe can now compute the minimum
propagation time for this topology. Note that= m(K + 1) + 1 orm = ((;;1) The
total infection time is then
tl:m(W+aK)+L+KW+LZ(n—1) +2L——+2\/W n—l).

T T r r (1)

3 Arefined network model: uniform bandwidth and latency

Since the general problem is hard, in this section we funtsime the model by using
the average bandwidthas up- and down-link bandwidth, and the average latdnag
the pair-wise latency.

In the example considered in Sectionl2.3, we implicitly assd that a non-preemptive
propagation schedule was used, namely each node infedtsoéits targets one at a
time and sequentially. It turns out that for UDP-worms we ad meed to consider
preemptive schedules as Theoildm 2 shows (a proof is in AppBa#). The theorem
allows us to restrict our search for optimal schedules tosthece of non-preemptive
ones only.

Theorem 2 For every preemptive schedule from a node to a set of tartjetse is a
non-preemptive schedule in which every target is infectddre no later than in the
preemptive schedule.

We next consider two scenarios: (a) all target nodes aretaifde, and (b) some
nodes could fail to be infected. Recall that we ws® denote the probability that a
node fails to be infected, and that nodes fail to be infeatdépendently.
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Fig. 3. lllustration of the tree topology for the = 0 case.

3.1 The case of absolute certaintyy = 0)

When there is no error, any topology in which all targets aachable from the root
would be sufficient to infect the entire population. Thus va@ éocus on minimizing
the infection time. If only some percentage of targets nedsktinfected, then we can
further reduce the total infection time using the same teglendeveloped here. Also
note that, as there is no error each node needs to be infeatgdmce. Therefore tree
topologies (arborescence) are sufficient.

Thanks to Theorerd 2, we only need to consider non-preemgtivedules. Every
propagation scheme following a tree topology.afodes can thus be viewed as a com-
bination of two sub-trees of size; andn,. Note thatn; andn, also count the root
nodes, thus: = n; + ns, as shown in FigurEl3. Lef(n) be the minimum total in-
fection time forn nodes. The(n) can be recursively computed in a straightforward
manner as follows.

T(n)

Il
]
=

{w + max{T(n1) + L, T(nz)}}

. W +a(n, —1)

1§n11n§HLln/2J { " + max{T(n1) + L, T(ng)}} (2)
Here we use the fact thdt(n) is monotonically increasing, thiB(n — nq) > T'(n1)
whenn; < |%]. Itis easy to see thaf(n) can be computed withi®(n?) time. Once
the optimal value of:; is determined, the infecting node can forward the infororati
aboutn; — 1 nodes in the first sub-tree to the first target and continuafiect the
residualn, — 1 nodes analogously.

If every newly infected node recomputes its sub-tree togpglthen this would pose
several disadvantages to the infection process. Firethycdmputation makes the worm
more prone to being detected due to prolonged resource iegatigun. Secondly, signif-
icant delay is added to the infection process, especiallgrwhis large. One solution
is to compute this information off-line before the infectiprocess. The optimal val-
ues ofn; corresponding to different values ofcan then be transmitted along with the
topology information. This strategy adds a fixed number débyo be transmitted per
target, and thus can be included in the block difytes per target.

We now compare the infection time of this optimal topologyhathe 3-level tree
topology in SectiofZ13. We consider multiple variationsiéfand L to observe the
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Fig. 4. The infection times of the 3-level topology and the reciesapology (topoA)

difference. In particular, we use two valuesiot 404 and1200 bytes, corresponding to
actual packet sizes of Slammer and Witty worf$]1, 2]. Figlisbows the propagation
time of the two topologies. As is demonstrated in the figune, difference between
two topologies is reduced dsincreases. The reason for this is that wlieis large, the
optimal tree becomes shorter, making it closer to the 3Hese topology. However, the
3-level tree is not optimal wheh is sufficiently large (whet. is very large, the optimal
topology is a 2-level tree). On the other hand, the recumsiueation[(R) is guaranteed
to yield the optimal topology.

The optimal value of; according to[[R) depends a lot on the valuelofAt one
extreme, whenl, > W we haven; = 1 for all n, yielding a two level tree
topology whose root is the source. The intuition is that, mtiee propagation time is
too large the source can actually send all worm packets ta@ets within the time
span for the first target to be infected. At the other extramteen L = 0 or very close
to zero, the optimal topology is a very unbalanced tree, asslby the following result,
whose proof is in Appendix?Al3.

Theorem 3 WhenL = 0, the optimal value of'(n), attained atn; = |5 |, is

T(n) = [logn] <P) +(n— 1)%. (3)

3.2 The case under uncertainty@ < p < 1)

For each infection topolog§ onn nodes, let § (n) and E (n) be the expected num-
ber of infected nodes and the expected total infection tiraspectively. Somewhat
abusing notation we define

En(n) = max{ES (n) | G is an infection topology on nodes,
Er(n) = max{E%(n) | G is an infection topology on nodes.
The first question we address is: what is the maximum expeetader of infected

nodes, and which topology achieves this? This maximum ea&pen shall be used
as a benchmark to investigate the trade-off between thectegh@umber of infected
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Fig. 5. Infection topologied3 andC.

nodes and the infection time of a topology. For instanceesmonding to the maximum
expectation there is a propagation topology which has b faigh infection time. If we
only need Ey to be some percentage of the maximum, ks it possible to reduce £
and if so how far can we reduce it? The next lemma, whose psaof Appendix{Z/A3,
answers the first question.

Lemma 4 The topology> which maximizeES, (n) is a star rooted at the source. More-
over,LEx(n) =14+ (n—1)(1 — p).

Figure[3.2(a) illustrates the topology of Lemfa 4. We wiferdo this topology as
topologyB. The expected infection time @ is then

EZ(n) = (n—1)W/r + L. (4)

This topology, while achieving the best expected humbemtddted nodes, is very
inefficient in terms of infection time. It is now natural todréss the following question:
how much can we improve in terms of the infection time if we wailling to “let go”

a few percents of the expected number of infected nodes? Bisé abvious strategy
is to choose any subset ef < n nodes and apply the same topoloByas above,
wheren’/n is the percentage of the optimalEve are willing to accept. This way, the
reduction in By is linear and the reduction in;Es also linear.

Fortunately, there is a significantly better strategy thengimple approach above.
With a linear reduction in iz, we can still keep i exponentially close to optimal! This
is, in a sense, the best one can hope for. (The converse idedsable, where a linear
sacrifice in By gives an exponential reduction inrEWe leave this problem open.) Our
infection topology is described below.

We consider a topology of three levels (including the orddjsource) in which each
nodez; (1 < i < z)in level 2 infectsk’ nodey; (1 < j < y) in level 3. Each nodg;
will be infected byk nodesz;. This topology is similar to the example 3-level tree we
consider in Sectiof 2.3, but now each node at the last layghtrbie infected for more
than once. Figue_3.2(b) illustrates the topologykbe 3, k = 2. We will refer to this
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topology agopologyC. We haver + y = n — 1 andk’z = ky; thus,z = ’{jri where

c= % The expected number of infected nodes can be computedasdol
C k € .k
B () = a(1 =)+ 1431 -1 =35 = (- D1 =p) (1= o) 41 69
Computing E(n) is significantly more complicated, even for such a simpletep
ogy. The proof of the following lemma can be found in Apper&iE.
Lemma5 We have

- W+FKa

Ef(n) =~

‘a l_
[Z(lfpl+p2l)] + Wtk |:lpl+p(f_p1)] (17pl>

kW
+ Lpt + (1 — p)? ( . +2L).

In particular, the following limit and theorem follows immiately.

. EZ(n) Uy 20 1 K'a/W
1 —(1— .
"LHOIOEg(n) (L=p ) 1—|—cJr 1+c¢

(6)

Theorem 6 For sufficiently largen, infection topology” yields an expected humber of
infected nodes exponentially close to optimality, yet cedithe expected infection time
kca/W

by a linear factor o + 5%~

We next illustrate how this theorem can be applied. To redbednfection time
for this topology, we want the limif{6) to be as small as polssisubject to some
desired threshold in terms of the expected number of infleateles. For instance, if we
want the expected number of infected nodes to be at leasttioinag of the optimal
EX(n) = (n — 1)(1 — p) + 1, then we need to choose our parameteand &’ to

minimize the limit
1 Ka/W 1 cla/W)k
1— 5 2 1o 2

(L=p +p )(1+c7L 1+c) A=p+r\ et —170 )

subject to the condition that

(n =D = p)(1 = =) + 12 ql(n ~ 1)1 —p) + 1],

which is equivalent to
oo~ =9 + 1/ (G + V)]
- 1n(%)

This can be done in a variety of ways, one of which is to choasdadively large ratio
¢ = k' /k (thus reducing the infection time), then choés®e satisfy constrainf{7). This

(7)
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Fig. 6. The infection time of 3-level and recursive topology with = 404 bytes

lower bound, however, is relatively smalldfis small, as shown in Figufé 6(a).As can
be seen from the figure, we can seleet 10 even whery is large (we seg = 0.9). We
will selectc = 5 for all other graphs.

To havegn as the expected number of infected nodes, we could have ageldgy
B with a sub-population of’ = ¢n nodes only. However, this topology is not nearly as
efficient as topology”, and the gap increases@gets larger, as shown in Figute 6(b).
TopologyC, however, is efficient only if: is sufficiently large. FigurEl6(c) shows the
gap between the actual ratio compared to the limit r&lioTBis gap is small even when
n is only about tens of thousands. For values:ddt six figures, the gap is negligible
and we need only to work with the limit ratibl(6).

We also look into the dependence of the limit ratio on thedtiéa failure probabil-
ity p. Figurd®(d) shows the values of the limits with 4 differealies ofp: 0.5, 0.4, 0.01,
and0.001. It can be seen that doesn’t have much effect on the ratio. Adecomes
sufficiently small, the ratio is essentially independent.of

4 Simulation results

To avoid the obstacle dNP-hardness, we refined our model by assuming uniform
bandwidths and latencies. The obvious question is whether a simple model can
yield practically useful results.

For the bandwidth assumption, if the uniform bandwidth letato be the lower
bound of all actual bandwidths, then the theoretical infectime computed from the
model is a worst-case time bound for the worm designer.
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Fig. 7. Minimum source bandwidth for the 3-level topology whigh = 404 bytes (a)
andW = 1200 bytes (b)

The uniform latency assumption, however, seems to be tongtHow does it hold
water in practice? Our simulation result shows that one @aplg set the uniform
latency to be the average of real-world latencies and ged goapagation time.

We simulated the propagation of the worm in a network withedlatencies. These
latencies were generated by the empirical latency didtdbun the Skitter data sef][8].
We generated(00 sets of latencies, correspondinglt@) network configurations. For
each network configuration, we computed the optimal profi@g#opology based on
relation ), using the average latency as the uniform tatémthe model. We then sim-
ulated the propagation following this topology, and conegkit with the propagation
following the 3-level topology on the same network. Due te éixtensive computation
of the simulation, we selV = 100,000 nodes instead of million nodes. We kept
r = 1 Mbps as before. The average latencies were ar@0mchs. FigurdB(a) depicts
the distributions of the propagation time ov&0 configurations for both topologies.
It can be seen that the recursive structure computeflby (@) tise average latency is
still superior to the 3-level topology.

Another advantage of the recursive topology is that it caaimesimilar time effi-
ciency as the Flash worm starting from a root node with musé mndwidth capacity.
Figured¥(a) and (b) show the minimum bandwidth at the rodhef3-level topology
(of the Flash worm) required in order for the Flash worm topawmate as fast as our
worm, whose starting node has onlivbps capacity. The figures plot this required
root’s bandwidth as a function of the total number of nodeor two empirical val-
ues oflW. We also varied. to see the effect of latencies on the efficiency of the Flash
worm and our worm. As can be seen, the result is consistehtowit previous analysis.
The required root’s bandwidth for Flash worms stays at peakrhall values of. and
reduces gradually ak increases. In particular, dt = 0.1s, the Flash worm needs a
significantly larger bandwidth &0 Mbps (compared to the uniform bandwidttMbps
using our recursive topology). This number even grows toatlban100 Mbps when
W increases, as shown in Figlile 7(b).

We also simulated the worm traffic generated during the gyapan process. Figure
B(b) summarizes the total traffic for the recursive topolaih 4 average values df.
For this simulation, we se¥ = 1 million nodes. As can be seen from the figure, the
total traffic has a peak value d60 Mbs, independent of the latencies. This number is



15

10

~
o

—L=01

=

1=0.2

w
o

=04

w

CDF (100 Runs)

---1=08

o
o

Traffic (bytes)
r

°

2
-
o

°
=
—

=
o

0.2] 3Layer Topology
— Recursive Topology

1 12 13 14

0 05 1 15 2 25
17 18 19 Time (seconds)

=Y

15 1.6
Time (seconds)

(a) Cumulative distributions (b) Total worm traffiy = 1 Million nodes.
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significantly smaller than the traffic generated by someaatorms such as Slammer
(165 Gbs). This is because the worm we consider is not a rarsdamning worm, and
thus can eliminate significantly the traffic for scanning.oftrer note is that, for this
amount of total traffic the worm is unlikely to cause any sfigaint instability in the
network core, validating our assumption for the network elo8uper-fast worm thus
is a very practical possibility, even under limited targetaurces!

5 Discussions and Future Works

The propagation of a malicious code in many ways resembla®adbast problem
[6} [4]. However, there are many differences between thesiglgms and our problem.
For instance[[6] did not consider variation of bandwidth&eour problem. In more re-
centworks in P2P and overlay network contexts suchlas[7tidjntermediate nodes
also took advantage of the P2P/overlay network structuteréadcast. In our prob-
lem, however, only the source can determine the broadgasiogy and the broadcast
schedule.

As a solution to our problem, propagation topolagyis a decent topology in the
sense that it sacrifices the expected number of infectedtmgglittle bit, while it im-
proves the expected infection time relatively well. Howgtke structure is probably
far from the best one can hope for. The main reason we choséotppC to analyze
is the feasibility of its analysis. The key idea behind aliesi propagation topology is
that there must be multiple paths to a target, and the graphldgibe “expanding” to
allow for concurrent propagation. The obvious choice waddm to be some sort of
expanderd12], which are graphs with very high connegtiaitd relatively low diam-
eters, thus reducing propagation time while keeping a regéllof resiliency. This line

of attack is wide open for further research.
For the general latency case, we have shown that the prabtens is NP-hard.
The obvious open problem is to devise a good approximatigordhm for this prob-
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lem. If the approximation ratio is sufficiently good, thefdience between the opti-
mal solution (say, a few milliseconds), and the approximhatdution (say, a few more
milliseconds) is practically insignificant. It is importaie also study how current con-
tainment policies such as that In|20] can thwart these tidacschedules. Finally, the
second problem we formulatedweMP — has not been addressed at alll.
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Appendix

Proof of Theorem[d

We will reduce &T CovERto MTMP. Consider an instance of the decision version of
SET CoVER where we are given a collectighof m subsets of a finite univerdé of n
elements, and a positive integer> m. It is NP-hard to decide if there is a set cover
of size at mosk.

An instance ofMTMP is constructed as follows. Set= W = ¢, wherec is an
arbitrary integer as long dsg c is a polynomial inm andn, so thatc can be computed
in polynomial time. The set of targets ¥ = {vy} U S U U, wherevy is the initially
infected node. The up- and down-link bandwidths are asvalo

T :ng) = Rl =C, vSes
r(S“) =71, =Ry :=2nc, VS €S, ,VeelU.
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(Recall that, forany node e V,r, = R meanSmf,“) = rf,d) = R.) The latencies are:
L’U()S =L,:=1, VSeS§
Lse=Ly:=m—k, VSe 8§ Vee S
Ly, = L :=m+n+ 2. forall other pairs of node&, w).

Lemma 7 TheSET COVER instance has a set cover of size at mogftand only if the
MTMP instance constructed above has a propagation structuresshedule with total
infection time at mostm + n + 3/2). ConsequentiyTmp is NP-hard.

Proof. For the forward direction, suppose there is a sub-collactic S of at mostk
members such thatscc = U. SinceC is a set cover, we can choose arbitrarily for each
memberS € C a subsefl's C S such thaUSEC Ts = U and theTs are all disjoint.
(This can be done with a straightforward greedy procedure.)

Consider the propagation structuteé = (V, E) defined as follows. The roat,
will infect all nodes inS, i.e. (v, S) € E, forall S € S. Each nodeS in the cover
C infects the nodes € Tgs, namely(S,e) € E, forall S € C ande € Ts. Now,
the transmission schedule for the ragtis such thatyy infects all nodes irC first
in any order, and then all other nodesdh— C. Then, for eachS € C, S infects
nodes inTs in any order. The time it takes for the last nodeSrto be infected is
Ty = (na+mW)/Ry + L1 =n+m+ 1. The last nodé in C will receive the worm
W and its data (for nodes ifs) at time at mostna + kW)/R1 + L1 = n+ k + 1.
Up on receiving the worm, each nodec C will infect nodes inT’s, which takes time
at most|Ts|W/Ry + Lo < nW/Ry + Ly = 1/2+ m — k. Because these infections
happen as soon as each nsteceives its worm, the last nodelihreceiving the worm
attimeatmostf, = (n+k+ 1)+ (1/2+m — k) = m + n + 3/2. Thus, the total
infection time is at mostmax{T}, T2} = m + n + 3/2, as desired.

Conversely, suppose there is a propagation structute (V, E') and some trans-
mission scheduling such that the total infection time is astm + n + 3/2. Note that
(vo,e) ¢ E forall e € U, because the latendy,, . ism +n+2 > m +n + 3/2.
For the same reaso($;, S2) ¢ E foranyS;,Se € S; (e,S) ¢ E foranye € U and
S e S;andife ¢ S, then(S,e) ¢ E. Consequently, the only possible edgeg&:ore
of the form(vg, S) for S € S, and(S, e) fore € S. Now, letTs = {e | (S,e) € E} be
the set of out-neighbors & in G. LetC = {S | T's # (} be the set of with non-zero
out-degrees. It is clear thétis a set cover of the originaleS CovER instance, other-
wise not all nodes it/ are infected. We show thé&thas at mosk members. Suppose
C has at least + 1 members, then the last memigpf C receiving the worm at time
atleastlhs = (na + (k+ 1)W)/Ry + L1 = n + k + 2. This last member will have
to infect nodes irl’s (there is at least one node in this set), which takes timeast le
Ty =W/Re + Ly = 1/(2n) +m — k > m — k. Consequently, the total infection time
isatleastly + T > n+m+ 3/2.

A.2 Proof of Theorem[2

Consider a node that starts to infectargets at timé following a preemptive schedule.
For each target;, letT;, 1 < i < m, be the time the source finishes transmission; to
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in the preemptive schedule. Also, I8, be the amount of data transmitteduto(which
includes the base malicious codlé and other information). Without loss of generality,
supposel; < T, < --- < T,,. The actual time fow; to be infected would then be
T; + L. Denotef;(t) as the amount of bandwidth reserved for the transmissionab
timet. We then havéV; = fO fi(t)dt, and3 770, (1)

Now consider the non-preemptive schedule followmg thesarder(1,2,--- ,m),
in which the source infects one node at a time using the whanhelWwidth capacity. For
1 < i < m, letT/ be the amount of transmission time the source uses to infethe
total amount of time until; is infected isI} + L. To finish the proof, we need to show
thatT/ + L <T; + L. We have:

T/ + L= Z '+ L= Zfo fi®) +L
Z Zkglfk( L<Z t

—Tl+(T2_T1)+"'+(Ti_Ti—1)+L—Ti+L

A.3 Proof of Theorem[3

We show this by induction. Whem = 1, T'(1) = 0 since the source is already infected.
Supposd3) holds for ali < k£ — 1. Forn = k, we have

T(k)= min {W +@+T(1€—n1)}

1<n; <[ %] r

min {(1 + [log(k — n1)]) <W;a) + (k- 1)%}

1<ni<| &)

(1+ Nlog(k — [k/2))]) (W —

>+(k1)%
= [log k] (@) + (k- 1)%.

This value is achieved at; = |n/2].

A.4 Proof of Theoremd

Consider an arbitrary infection topology. For each node; (0 < i < n — 1), where
vg IS the source, lef; be the random variable indicatingf is infected using this
topology. Then, clearly Pro&; = 1) < 1 — p. Thus, by linearity of expectation,

n—1 n—1 n—1
EX(n)=E | Z|=> EZz <1+Z +(n—1(1-p) (8)
=0 =0

Equality holds if and only if ProlZ; = 1] = 1 — p, which means that there is a direct
edge fromy, to v;. Otherwise, there is a positive probability that every datim the
root tov; has a node not infectable, implying not infectable.
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A.5 Proof of Lemmald

Recall that infection time is the amount of time startingrfirarhen the source sends out
its first bit until the last bit of the worm is gone from the net.

Firstly, the time it takes until the last packet from the smucompletely disappears
from the network is ——

AL
T

Secondly, letc; be the last node at levelwhich is infected. Note thaf, is a random
variable taking values frort to =, where the value df indicates that no node at level
2 is infected. It follows that

Prol < jl=p"+ Y (1—pp" " =p" ©

i=

<. =

Prod7 > j] =1—p"~ (10)

If I > 0, the total amount of time until the last bit from disappears from the network
is
k/ k/ k/ k/
Zy— VAR KWWK EW
r T r T

+ 2L

If I = 0, setZ; = 0. Depending on the relationship between various parameters
(k, k', L,...), the source might still be transmitting whephas finished, or vice versa.
The total time the worm is on the networkZs= max{Z, Z>}, whereZ, is a constant
while Z; is a random variable. We wish to compute

E%(n) = E[Z] =7 PrOt{Zl > ZQ] + E[ZQ | 71 < Zg] Prol:{Zl < ZQ] (11)

K a/W+1

is greater than the constant= [%W . From [9) and[[(10), we have Prgh >

Zy] = p, and ProbZ; < Z,] = 1 — pl. It remains to compute[&;|Z; < Z]. Since
7y < Zyis equivalenttd > x — [, we have

x

ElZ2|Zy < Zo) = Y E[Zy| I = j]ProtI = j]

Note thatZ, > Z, is equivalenttd < z — [Mw . Assumingn is large, then

j=z—Il+1
- W4ka KW ;
= Z (jﬂ + + 2L) (1—=p)p*
) r r
j=z—Il+1
W+ K -1 KW
:ﬂ[xa—pl)ﬂpwm}+(1—pl)( +2L)
T 1—p T
Combined with[(IlL), we get
W +ka W+ ka -1
Bf(n) = ——— [2(1 = p' +p")] + — [lpl+p(f_p )] (1-p')

KW
+Lpt + (1 —ph)? (T + ZL) .(12)
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