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ABSTRACT 
This paper presents a declarative approach to the debugging of 
object-oriented programs and illustrates the methodology 
through an extension of a novel interactive visualization system 
for Java developed in our previous research.  Unlike traditional 
“procedural” debugging, we use the term “declarative 
debugging” to refer to a flexible set of queries on individual 
execution states and also over the entire history of execution (or 
portion of the history).  Examples include queries to find all 
values assigned to a variable over its life-time; which variable 
has a certain value; the calling sequence that results in a certain 
outcome;  whether a certain statement was executed; etc.   These 
queries were arrived at by a systematic study of errors in object-
oriented programs in our previous research.  Our proposed 
system, JavaDD,  maintains the execution history as a relational 
database of salient events, such as method call/return, thread 
start/end, variable assignment, etc.  An important property of 
our approach is that these queries can be posed interactively (at 
any step of execution), and there is no need to develop a 
compiler to instrument the source code, as in related research 
projects. Furthermore, we also sketch a visual interface so that 
both queries and answers can be composed using inituitive 
object and sequence diagrams.  We believe such an approach is 
a significant contribution to the art of program debugging.  We 
present the architecture of JavaDD, a detailed catalog of our 
queries and their translation, and several examples illustrating 
the approach.   We also compare our approach related research 
efforts in the area of query-based analysis of object-oriented 
programs. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging - 
Debugging aids - Tracing. 

General Terms 
Design, Human Factors, Languages 

Keywords 
Bug patterns, Java, query-based debugging, execution history, 
object/sequence diagrams, relational databases, visual interfaces 

1. INTRODUCTION 
 
       Traditional debugging is a “procedural” process in that the 
programmer has to proceed in step-by-step and object-by-object  
in order to uncover the cause of a bug.  To facilitate this 
process, programming environments have evolved considerably 
in the past three decades in order to provide increasingly better 
tools and techniques: break points, source code stepping, back 
traces, object inspectors, variable spying, watch points, etc.  
Modern IDEs, such as Eclipse, NetBeans, and Visual Studio, 
also provide similar capabilities.  In recent years, there have 
been richer execution environments, such as the JIVE system 
for Java  [11][11][12][13], BlueJ [22], jGRASP [16], and MVT 
[24].  Still, the debugging paradigm for object-oriented 
languages such as Java is fundamentally procedural in nature. 

       In this paper, we propose a declarative approach to the 
debugging of object-oriented programs, and we illustrate our 
methodology through a system called JavaDD, for Java 
Declarative Debugger.  This work extends our earlier research 
on the JIVE system for Java, which supports forward and 
reverse program stepping, and visualizing execution states and 
histories using enhanced object diagrams and time-sequence 
diagrams at varying levels of granularity.  The term 
‘declarative’ contrasts from ‘procedural’ in that the former 
focuses on ‘what’ while the latter focuses on ‘how’.  We use the 
term ‘declarative debugging’ to refer to a broad set of queries 
over the current execution state as well as the history of 
execution.  Declarative debugging complements procedural 
debugging, and we expect that both forms of debugging will be 
used in the general case. 

       To illustrate declarative debugging, note that a crucial 
aspect of program understanding is knowing how variables take 
on different values during execution.  The use of print 
statements is the standard “procedural” way of eliciting this 
information.  This is a classic case of the need to query over 
execution history.  As another example, consider a parse tree 
composed of, say, 1000 nodes.  While searching for nodes that 
satisfy some criteria, an exception is thrown. Debugging this 
program via traditional debuggers is tedious since there are 1000 
node instances and possibly tens of thousands of method calls. 
Therefore, single-stepping is not a viable technique.  Inserting 
break points is also not helpful, since the code that is 
responsible for the search is recursive.  On the other hand, using 
declarative debugging we can isolate the bug via two queries: 
first, find the environment (object and method call instances) 
where the exception is thrown; and, second, query the object 
instance when the exception is thrown. These two queries are 
used in many different debugging scenarios. For example, 
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instead of searching for the environment of a thrown exception, 
the programmer can ask for the environment of a member field 
assignment or a method call.  

       In keeping with the JIVE philosophy for program 
visualization, we propose two broad categories of declarative 
debugging queries in this paper: (i) queries over individual 
execution states, where each state consists of the set of active 
objects and outstanding method invocations, and (ii) queries 
over the entire history of execution, or a subset of the history. 
Examples of (i) include queries about an object or a variable and 
its value, call chains, etc.  Examples of (ii) include queries about 
all values assigned to a variable over its history, whether a 
particular statement was ever executed or not; etc.   The need to 
query sub-histories is especially useful when debugging 
interactive programs with GUIs, since each interaction episode 
corresponds to a well-defined sub-history.  We arrived at our 
queries by a study of the types of errors that arise in object-
oriented programs [12][13].   Our proposed system has the 
ability to filter system objects so that a programmer may focus 
on the objects explicitly created by  his or her program.   

       This paper also describes the architecture of JavaDD along 
with a detailed catalog of queries and their translation in terms 
of a deductive database system built in Prolog.   We log the 
history of salient events (method call, return, assignment, object 
creation, etc) during the execution of a Java program using the 
JPDA interface (Java Platform Debugger Architecture). Such an 
approach allows us to avoid instrumenting the source program 
with debugging commands or queries, as in other related 
approaches  [14][23][25], and enables a completely modular 
approach to declarative debugging.  It is important to also note 
that our declarative debugger is interactive, and hence queries 
can be posed at any point during program execution.  Our 
approach to recording the history of changes is incremental in 
nature, i.e., when a variable is assigned, we save only the 
previous value assigned to the variable. Thus, queries about 
previous execution states involve some state reconstruction.  
The benefit of this approach is that forward execution incurs no 
appreciable slowdown.   

       To complete the paper, we also sketch a visual interface so 
that both queries and answers can be composed in terms of a 
framework of object and time-sequence diagrams , source code 
and program output.   In this way, a programmer is relieved of 
the burden of composing queries in an unfamiliar query 
language.  Thus the contributions of our paper are: (i) a 
methodology for a Java declarative debugger without requiring 
source code instrumentation and using off-the-shelf Java 
compiler and JVM,  (ii) the provision of queries over individual 
states and the history of execution, (iii) a higher-level visual 
interface for queries and answers.  Taken together, we believe 
that this proposed approach of declarative debugging is a 
significant contribution to field of object-oriented program 
debugging.     

       The remainder of the paper is organized as follows. Section 
2 surveys closely related research and compares them with our 
work.  Section 3 presents the architecture of the Java DD 
system, including the event log language.  Section 4 presents 
our declarative queries for debugging. Section 5 provides an 
evaluation of our approach, by first presenting an empirical 
survey of errors in object-oriented programs followed by two 

short case studies. Section 6 sketches the visual query interface 
for presenting and observing answers.  Section 7 presents 
conclusions and areas of further research. 
 

2. RELATED WORK        
 
       Three recent research projects employ the concept of 
declarative queries for program analysis  [23], [25], and [14].   
An important difference in our approach is our emphasis on 
interactive debugging and without having to develop a compiler 
to perform source code instrumentation or modify the JVM: 
1. Lencevicius et al [23] proposed a query-based debugger to 

understand object relationships.  Their query language is 
expressed in the same language as the target OO language 
(Self), and thus a programmer does not need to learn a new 
language. Queries consist of a search domain and a 
constraint.  Both the compiler and the underlying virtual 
machine need to be modified to realize the query 
semantics.  In query-based debugging of [23], a query 
evolution can result in side effects on program state, and 
might introduce bugs and hence their result may not reflect 
the actual state of the program. On the positive side, this 
approach can provide incremental delivery of results, a 
feature that is useful in dealing with queries that takes 
considerable time to find all answers.   

2. Recently, PQL (Program Query Language) was developed 
by Martin et al [25] to query over program execution for 
finding errors and security flaws in programs.  Queries may 
formulate application-specific code patterns that may result 
in vulnerabilities at run-time.  The queries translated to 
Datalog (which is essentially declarative Prolog without 
functors), and provides the ability to take an action once a 
match found.   A combination of static and dynamic 
analysis is performed to answer queries.  The PQL 
compiler generates code that is weaved into the target 
application and matches against a history of relevant events 
at execution time.   A number of interesting security 
violations are found by this technique. 

3. Goldsmith et al [14] proposed the PTQL (Program Trace 
Query Language) as a relational query language designed 
to query program trace.  Similar in goals with PQL, PTQL 
employs an SQL-like query language.    Partiqle compiles 
the PTQL queries into instrumentation in a given Java 
program.  PTQL queries can be used to specify what to be 
recorded during program execution, and hence this 
technique can be effective with programs that generate 
many irrelevant events. 

 WhyLine [21] is an interrogative debugger for the Alice 
programming environment.   It allows the user to ask why or 
why didn’t  a given event occur. The WhyLine gives the answer 
in the form of an execution path that leads or was supposed to 
lead to the execution of the given event. The path is annotated 
with control flow information. The ‘why’ and ‘why not’ 
questions reduce to the question whether an execution path 
leading to the given event exists or not.    In our work, we 
provide queries on call-chains, call-trees, and sub-histories in 
order to extract similar information as in WhyLine. 
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       Pauw et al. [31] proposed a catalog of views to describe 
patterns in program behavior and provided the Object Visualizer 
system to dynamically visualize object oriented programs via 
the proposed views. The proposed views are macroscopic views 
that help in understanding the overall program execution; 
however,   the debugging process requires microscopic views 
that provide more details as well. The catalog presented in [31]  
is composed of seven views and can be summarized as follows. 
1. Allocation matrix displays the instantiation  relation among 

objects i.e. which objects result in the instantiation of other 
objects. 

2. Class-time chart groups method call according to their 
class in relation to time. 

3. Functions-instances matrix groups method calls according 
to their instance . 

4. Histogram of instances groups objects by class. 
5. Inter-Class call cluster shows the coupling  among classes. 
6. Inter-class call matrix provides an overall view of object 

interactions grouped by class. 
7. Intra-class call matrix groups for each object calls to 

methods defined in its own class.  
        The absence of a methodology for querying Java program 
execution was recognized in our earlier work [12] on the JIVE 
system. JIVE visualizes the entire history of execution, and 
provides three views: the time-sequence diagram which depicts 
the interaction among objects in relation to time; the object 
diagram which shows the state of objects; and the source code 
view that highlights the executed line. We have proposed the 
following seven queries:  value of a variable; the variable that 
holds a certain value or range of values; arguments to a method 
call; the number of times a method is called, a statement is 
executed, or a class is instantiated; and the last activity of an 
object.  However, this set provides a limited support for 
practical debugging. Faced with the lack of methodology of 
querying the execution history, an empirical study has been 
conducted to understand the difference in visualization of 
correct and erroneous programs [13]. This study provided a set 
of queries which have been formulated in the methodology 
presented in this paper.  

      Rosenblum [34] investigated why programming with 
assertions was not widespread industry wise. Two reasons were 
found.  First, assertion preprocessors did not work well with the 
available development tools and that did not meet the need of 
the “average software developer.” The second reason was the 
lack of studies on types of assertions that can guard effectively 
against known error patterns.  Rosenblum proposed a method of 
programming with assertions based on an empirical study of 
software interface faults of C programs by Perry and Evangelist 
[32].  He proposed an assertion to guard against each kind of 
errors. His research contributed a classification of assertions 
under two main categories: assertions related to functions 
interfaces and assertions related to functions implementation. 

       Query-based debugging and programming with assertions 
or design-by-contract (DBC), in general, are both concerned 
with finding and signaling erroneous program behavior. Our 
approach is similar to Rosenblum’s in two aspects. Both 
approaches are based on empirical studies of software errors. 
Rosenblum’s method of programming with assertion and our 
method of query-based debugging aim to make the technique 
easy enough so that an “average developer” can use it by 

providing a catalog of commonly used assertions and queries 
respectively.  Our work differs in that it is concerned with object 
oriented programs while Rosenblum work was done on C 
programs.  

       

      Gamma et al [8] have proposed a collection of design 
patterns that aimed at showing how to design object oriented 
programs. Fowler et al [7] have proposed a catalog of re-
factoring object oriented programs. Providing a collection of re-
factoring techniques in OO programs opened the possibility for 
automatic re-factoring tools. Meyers [29] and Bloch [5] 
presented a collection of best practices in programming in C++ 
and Java respectively.  Several static analysis tools [35][17] 
exist to enforce best practices as outlined by Meyers and Bloch. 
Following the same path a collection of debugging queries will 
contribute to the rise of automated query-based (declarative) 
debuggers. 

3. JAVA DD ARCHITECTURE 
 
        One of the potential obstacles in declarative debugging is 
that an execution history of large-scale software that runs for 
some time may have millions of events that demand large-scale 
database server.  Consider a scenario when a developer is 
running an IDE, such as Eclipse, and has started a debugger 
based on the JavaDD framework.  The JavaDD will invoke a 
JVM and interact with the database server that is running on the 
same machine.  At this point the IDE, the JVM, and the database 
server are all competing for memory.  A centralized debugger 
based on JavaDD would not be practical solution in that 
scenario, and hence we propose a distributed architecture. The 
distributed architecture opens the opportunity to provide 
debugging and analysis services. 

3.1 System Tiers and Components 
       We have implemented a prototype of the JavaDD 
framework, and Figure 1 shows the main tiers and components 
of this framework.  The architecture of JavaDD is a composed 
of four tiers.  The first tier consists of three components: The 
JPDA, Prolog Beans server and relations specification. JPDA 
the Java Platform Debugger Architecture [18] is designed as a 
distributed system that can interface with a JVM running on the 
same machine or a different machine. JPDA has an event-based 
architecture.  Prolog Beans [33] is a Prolog server that can be 
interfaced with Java or .Net. The client-server architecture of 
Prolog Beans allows the server to be a component of a 
distributed system. Prolog Beans was designed to handle large 
applications. 
       The second tier is composed of two components: the 
Logger and the Query Manager. Once the Logger receives a 
Java program it starts a JVM and subscribes for the desired 
events with the JPDA. It is also possible (but not implemented 
in the current prototype) that the Logger interacts with an 
already running JVM. Query Manager is responsible for 
constructing Prolog goals (queries) based on the invoked 
method and the passed arguments and sending the constructed 
goals to the Prolog Beans server. Once Query Manger receives 
answers, it forwards them back to the Tools Interface. In the 
case when the Query Manager receives a request to add a 
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composite query, the query has to go through some security 
checks. Then the query is tested against standard execution 
history. The user is notified by an error message or the results of 
the saved composite query.  
       The third tier is composed form only one component: the 
Tools Interface which is a façade for the JavaDD Framework. 
The rational behind this design is that the framework is under 
continuous development and evaluation; therefore, a specific 
implementation may need to be replaced by another efficient 
implementation. Another example, we may wish to switch from 
Prolog Beans to a SQL server. The fourth tier has only one 
component: the User Interface that interacts with the Tools 
interface.  

3.2 JEL: Java Events Log 
       JEL extends the work that JIVE and JyLog [19] have 
implemented similar recording techniques based on logging in 
XML. JEL describes the basic events in program execution 
history and can be easily modified to include a sophisticated 
description of static and dynamic information about a given 
program. The implemented prototype supports the description of 

10 events: method call, method exit, set field, get field, data 
structure contents, exception, step, thread start, thread end, and 
member fields. Figure 2 shows part of the BNF grammar of 
JEL. Appendix A gives a full execution history in JEL for a 
binary search tree program. The remainder of this section gives 
more details about individual events. Each event has a unique id 
in addition to other specific information;  objects are identified 
by their class and a unique id. 

•  Method call event records information about a method 
call. The event describes the source code location of the 
first executable line of the method body, the thread within 
which the invocation occurred, the class or the instance 
that this method was invoked on, method name, and 

method arguments.  

•  Method exit event records similar information as method 
call event. Method exit event records the returned value of 
the method call instead of the arguments.  

•  Set Field event records information about the thread 
where this event occurred, the source location where the 
field was set to a new value, the instance or the class 

Figure 1 

 

Figure 2:  JEL BNF grammar 

<events> 
<event> 
<execution-event> 
 
 
<info> 
<method-call>       
<method-exit> 
<set-field> 
<get-field>         
<data-structure>    
<exception>         
<step>  
<class-prepare>     
<thread-start>      
<thread-death>      

 

::= event* 
::= event ‘(’<id> , <execution-event> ‘)’ ‘.’ 
::= <class-prepare>  |  <method-call>      |  <method-exit>  |  <set-field> 
  | <get-field>      |  <data-structure>   |  <exception> 
  | <step>           |  <thread-start>     |  <thread-death> 
::= <location> ,  <thread> 
::= methodcall   ‘(’ <info>   , (<instance> | <class>), <name>, <arguments> ‘)’ 
::= methodexit   ‘(’ <info>   , (<instance> | <class>), <name>, <value>‘)’ 
::= setfield     ‘(’ <info>   , (<instance> | <class>), <name>, <value>‘)’ 
::= getfield     ‘(’ <info>   , (<instance> | <class>), <name>  ‘)’ 
::= datastructure‘(’ <info>   , <contents>‘)’ 
::= exception    ‘(’ <info>   , <instance> , <message> , ( <location> | uncaught ) ‘)’ 
::= step         ‘(‘ <info>   , <local-variable-list> ’)’ 
::= memberfields ‘(’ <thread> , <class> , <member-fields> ‘)’ 
::= threadstart  ‘(‘ <thread> , <thread-group>  ’)’ 
::= threaddeath  ‘(‘ <thread> , <thread-group>  ’)’ 
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where this field is assigned to a new value and the new 
value.  

•  Get Field event records similar information as the set 
field event without providing the value of the field.  

•  Data Structure event is recorded after a method entry 
event and method exit event, and also after a set field 
event if the type of the field being assigned a new value is 
a data structure, and at user defined break points. The data 
structure can be array or a Collection instance. The event 
describes the source code information of the event 
targeted the recording of the data structure.  

•  Step event describes the thread and the source code 
location information in addition to names and values of 
visible local variables in each step. The program control 
flow can be inferred form step events. 

•  Exception event records information about the thread in 
which this exception is thrown or caught, the source code 
location, the exception instance, the exception message, 
and the catch location if it is caught or the uncaught 
keyword other wise. 

•  Thread Start and Thread Death events record the 
starting or the ending of a thread. The thread group is also 
recorded. 

•  Class prepare event records information regarding 
member fields and methods of a given class. Currently 
only recording member fields is implemented. 

 

4. DECLARATIVE DEBUGGING 
 
        Declarative debugging is based upon a query catalog and 
execution history, which is recorded as a database. The database 
is populated by entries corresponding to execution events which 
are specified by JEL. Figure 3 gives the basic relations defined 
in the database schema.  

Relation Fields 
methodcall location, thread, instance-class, name, arguments 

methodexit location, thread, instance-class, name, returned-value 

setfield location, thread, instance-class, name, value 

getfield location, thread, instance-class, name 

datastructure location, thread, contents 

exception location, thread, instance, message, caught-uncaught 

step location, thread, variables 

classprepare thread, class, member-fields 

threadstart thread, thread-group 

threaddeath thread, thread-group 

Figure 3 

       The query catalog given in Table 2 in Appendix A can be 
organized under three categories: queries on specific events, 
queries on execution history, and query management. Section 
4.1 discusses queries on specific events. There are five kinds of 
queries over the execution history and are illustrated in section 

4.2. Query management techniques are discussed in section 4.3.  
Table 2 in Appendix A gives an overview of the query catalog.  
 

4.1 Queries on Specific Events 
 

Query Where an Event Occurred. In object-oriented 
programming, execution events occur within an environment. 
An environment is an instance object and an instance method 
invocation or else it is a class and a static method invocation. 
This environment represents the enclosing environment for an 
event. The instance or the class is referred to as the enclosing 
instance or enclosing class and the method is referred to as the 
enclosing method for the event. The enclosing environment for 
a given event can be obtained by the where query given in 
Figure 4 for the following five events: set field event, get field 
event, method call event, object instantiation event which is 
recorded as method call event to the method <init> and 
exception event.  
 
/*  Find the enclosing environment: the enclosing method  */ 
/*  and the enclosing class or instance for a given event      */ 
 
where( Event,  event( id(CallID) , EnclosingEnvironment)):- 
            event( id( ID ) , Event ),    
            enclosing_method( id(ID) , id( CallID ) , _),  
            event( id(CallID) , EnclosingEnvironment).   
 

Figure 4: The ‘ where’ query 
 

Example 1: Where did a field assignment occur?  

       Consider the WhereExample program given in Figure 5. 
Class WhereExample has a static member field d which is 
assigned in method m and in the constructor of the HelperClass. 
The programmer wishes to know where the member field d is 
assigned. Q1 in Figure 6 shows how to query about the 
enclosing environment in which the member field d was 
assigned to any value. Results are returned in the Environment 
variable which is the enclosing method call event. A1 gives the 
answer to Q1 indicating that the assignment occurred in a call to 
method m in instance of WhereExample whose unique id is 417 
and in the constructor of an instance of HelperClass whose id is 
425.  In some debugging scenarios, the question where a field 
was assigned a specific value arises. Q2 asks where field d was 
assigned to an instance of Double whose int value is 22.56. 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

public class WhereExample { 
    public static Double d; 
    public WhereExample() { m(); } 
    public void m(){ d = new Double(22.56); } 
    public static void main(String[] args) { 
       WhereExample example = new WhereExample(); 
       HelperClass  helper  = new HelperClass(); 
    } 
} 
class HelperClass{ 
    public HelperClass(){ WhereExample.d = new Double(100.00); 
} 

 Figure 5 
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| ?-  where( setfield( _ , _ , classname( 'WhereExample') ,  
                               name( 'd' ) , _ ),  
                   Environment).         
            
Environment =  
event( id(7), 
           methodcall( location('WhereExample.java',4) , 
                               thread(main) , 
                               instance('WhereExample',417) , 
                               name(m) , 
                               arguments([ ])))  
Environment =  
event(id(19), 
         methodcall( location('WhereExample.java',11) , 
                             thread(main) , 
                             instance('HelperClass',425) ,  
                             name('<init>') ,  
                             arguments([ ])))  

Q1 
 
 
 
A1 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q2 
 
 
 
 
 
A2 

| ?- where( setfield( _ , _ , classname( 'WhereExample') , 
                               name( 'd'), 
                               value(instance( 'java.lang.Double' , _, 
                                         value('22.56’)))),  
                  Environment). 
 
Environment =  
event( id(7), 
           methodcall( location('WhereExample.java',4) , 
                               thread(main) , 
                               instance('WhereExample',417) , 
                               name(m) , 
                               arguments([ ])))  

 Figure 6 
 

Query the State of an Object.  Querying the state of an 
object is concerned with the encapsulation aspect of object-
oriented programming. The state of an object is captured in the 
values of its member fields and public and protected member 
fields of its super classes. Querying the state of an object helps 
in verifying class invariant. Case study 2: The Double Descent 
gives an example where investigating the state of an object 
revealed the reason for the program to throw a class cast 
exception. 
 
Query To Validate Contracts. In design-by-contract 
[27][28][30] the client has to meet preconditions or specific 
requirements in order to be able to call a certain method. These 
requirements are usually constraints on the arguments and the 
state. Our method generalizes the requirement to be imposed on 
any execution event and not only on method calls as in DBC. 
Thus those requirements are candidate queries. There are three 
factors that can affect the execution of a given event within the 
enclosing method. These factors can be considered as the 
requirement for an event. 
1. Arguments values 
2. The returned value of all preceding method calls to a given 

event within the same enclosing method 
3. Local variable values before the execution of the event 

 
Analogously, the post-condition in DBC is the effect that 

the called method promises upon it is completion. Our 
methodology generalizes this idea to all executed events. The 

effect of the execution of an event on the enclosing method can 
appear in the following three areas. 
1. The returned value of the enclosing method 
2. Methods that have been called after the execution of the 

event within the same enclosing method 
3. Local variables values after the execution of the event 
       DBC fails to specify directly that some other methods need 
to be called before or after a given method. Having recorded the 
execution history it is possible to inspect whether a certain 
method(s) has been called before or after a given event. Case 
study in section 5.2 discusses the application of these queries. 
 
Group Method Calls according to Call Chain. Compared 
with the traditional procedural paradigm, the object-oriented 
paradigm engenders the use of many small methods and greater 
method interaction. Thus, posing queries regarding the 
interaction between objects is essential in the debugging process 
and in the understanding of object oriented programs in general. 
A method call can be viewed as a message whose content is the 
passed arguments. Each message has a response which is the 
returned value or void. A message can have no response if it 
exits abnormally, i.e. throws an exception. Call chain can serve 
as a proof of certain execution or as a way to inspect argument 
values propagated through the chain of calls. Case study 1: The 
Traveling Null Pointer discussed in section 5.2, shows how the 
call chain query is effective in locating a null pointer. Figure 7 
illustrate the call_chain relation in Prolog. 
 

/* list of id's presenting a call chain to event ID starting from Start */ 
 
call_chain( id(ID) , id(Start) , Out ):- 
 call_chain_helper( id(ID) , id(Start) , [ ] , Out). 
 
/* There two base cases: first, when search go less than the lower bound */ 
/* Second base case occurs when encounter main method.                       */ 
/* One recursive case to search for the rest of the call chain                     */ 
 
call_chain_helper( id(ID) , id(Start), [Last|PathRest] ,  [Last|PathRest] ):- 
       ID =< Start, !. 
call_chain_helper( id(MainID) , id(_)    , Path, [MainID|Path] ):- 
       event( id(MainID) ,  
               methodcall(_ , _ , _ , name('main'), 
                            arguments( [value( instance( 'java.lang.String[ ]', _ ))]))).           
call_chain_helper( id(ID) , id(Start) , PathSoFar , Path ):- 
       enclosing_method(id(ID) , id(Enclosing) , id(_)), 
       call_chain_helper( id(Enclosing) , id(Start) ,[ID|PathSoFar] , Path). 
 

Figure 7 
 
4.2  Queries over the Execution History 
 

Execution History Subset. In most cases the erroneous code 
is contained in a small segment of the source code and the 
erroneous behavior is contained in a small segment of the 
execution history. Consider a program which has a call chain of, 
say, 10 method calls leading to the execution of a certain event. 
And the erroneous behavior is suspected to be in the last three 
method calls of the call chain. A query over a domain of events 
starting at the eighth call and ending in the 10th call is more 
focused than a query over the entire call chain.      
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Comparing Histories. Eisenstadt [6] describes the “Dump & 
Diff” as a technique to locate errors. This technique works as 
follows. The output of print statements is saved to two text files 
corresponding to two different executions; the two files are then 
compared using a source-compare “diff” utility, which 
highlights the difference between the two outputs. This 
technique can be adapted to query multiple execution histories 
and to compare the results of multiple queries over the same 
execution history. Comparative queries can be helpful to see the 
difference between data structure contents, and call chains and 
much more. Comparative queries are known to be helpful in 
isolating errors related to software maintenance. 

Call Tree. Grouping method calls according to a call tree is 
motivated by the same reasons to group method calls according 
to a call chain. However a call tree depicts a different kind of 
interaction among objects. Method calls that are involved in a 
call tree collaborate in achieving one task those method are not 
necessarily dependant on each other. Each method can be 
independent of the other methods unlike method calls in a call 
chain which are dependent on each other,  i.e. the called method 
depends on the caller.    

Gathering Data. Eisenstadt [6] in his study on how bug were 
found in 51 cases gathered from professional programmers 
found that in 27 cases, the bug was found by gathering data 
regarding the execution of the program. Novice programmers 
use the output print statement to gather data regarding some 
variables at certain points in the program execution. Traditional 
debuggers provide a watch on a field or a variable to allow the 
programmer to see how a variable or a field changes; however, 
it does not provide a full history of values assigned to that 
variable or the watched field. An advantage of our technique 
over the traditional debuggers is that the programmer is not 
responsible for gathering the data, and neither is he responsible 
for stepping over the program to observe the changes in the 
value of a variable or a field. Our methodology recognizes the 
importance of the data gathering phase in the debugging 
process, and extends to gather data regarding the following 
1. Member field value history 
2. Local variable value history ( understating loop execution ) 
3. History of arguments of  method calls 
4. History of return value of method calls 
5. Contents of data structure. 
6. History of contents of data structure. 
7. All Class instances and their states (under standing user 

defined data structures) 
8. Thread status such: running and exited threads 
  
Example 2: History of arguments to a tail recursive 
factorial. 

       Figure 8 shows an implementation of the factorial functions 
using the accumulator passing style. Q1 in Figure 9 shows how 
to pose the arguments_history query over the entire 34 events 
recorded for that program. The query can be refined to be posed 
on a specific domain of events rather than the entire history. In 
the answer given A1, the id preceding the arguments is the event 
id for that specific method call so the programmer can further 
investigate the execution of any call.  
 

 
 
 
 
 

public int factorial(int n, int accum) 
{ 
        if(n == 0) return accum; 
        else return factorial(n-1 , n * accum); 
} 

Figure 8 

 
 

| ?- arguments_history(id(0) , 
   id(34) , 
   methodcall( _ , _ ,_ , name('factorial') , _ ) , 
   History).            
History = [ 
 [ id(7),   arguments([ value(5), value(1) ]) ], 
 [ id(9),   arguments([ value(4), value(5) ]) ], 
 [ id(11), arguments([ value(3), value(20) ]) ], 
 [ id(13), arguments([ value(2), value(60) ]) ], 
 [ id(15), arguments([ value(1), value(120) ]) ], 
 [ id(17), arguments([ value(0), value(120) ]) ]  
                 ]  

Figure 9      

 

Query about Statement Execution. One of the most 
recurring questions in the debugging process is whether a 
certain statement has been executed or not. Novice programmers 
find the answer for such a question by inserting multiple print 
statements in their code. Advanced developer would insert break 
points using a traditional debugger to verify whether a given 
statement has been executed or not. The answer to this question 
is either yes or no.  We propose the following seven queries: 
1. Was a given conditional statement executed?  
2. Was a given method called? 
3. Was a member field assigned? 
4. Is there an instance of a specific class?  
5. Was a specific exception caught? 
6. Is a given thread still running? 
7. Has a given thread exited? 
 

4.3 Query Management 
 

Compose and Save Queries. The ability to compose queries 
provides a way to adapt queries to recurring bug patterns as well 
as to the individual needs of the developer. Also it allows 
advanced user to add highly specialized queries. The idea is 
similar to the idea behind the Emacs system that allows the user 
to add macros dynamically to add functionally to the system. 
Composed queries guarantee the flexibility and extendibility of 
our framework. Allowing the user to add queries dynamically 
results in a general purpose dynamic analysis tool since there is 
no requirement on the contents of the macro besides it must be 
valid Prolog code.  
Save Queries Answers. Calculating a query on a program 
history that has a million or more events is costly and time 
demanding. In many debugging scenarios the programmer may 
go back to examine the results of previous queries or would like 
to compare them. Recomputing a query on such execution 
history is wasteful; therefore, queries and their answers should 
be saved so it is convenient for the programmer to examine the 
previous results and perform comparisons.   



 8

5. EVALUTATION 
 

5.1 Errors in Object Oriented Programs 
       Our studies started by building a database of incorrect Java 
programs and the corrected programs. Programs used in our 
research are gathered from [1][2] [5][26], the Java language 
specification and some errors produced by the first author, 
students and colleagues. The database is organized according to 
the Knuth classification [20] modified to cover object oriented 
and concurrent programming errors. Errors are classified into 
eleven categories:  

1 
2 
3 
4 
5 

OO programming related: OO  
Concurrent programming : C  
Design anomalies: DA  
Algorithmic anomalies: A  
Blunders: B  

6 
7 
8 
9 
10 
11 

Data disasters: D  
Forgetfulness: F  
Language lossage: L  
Mismatches: M  
Robustness: R 
Typographic trivia: T 

 
       The set of queries was used to debug 24 programs gathered 
from different resources. Table 2 in appendix A gives detailed 
explanation of each query. We have recorded the main queries 
that were used to locate the source of the erroneous behavior in 
each program. Table 1 shows these results. The second column 
gives the category and subcategory of the erroneous program, 
the third column lists queries used to isolate the bug. In some 
case more than one query could have been used to debug the 
program, in those cases we list queries separated by “or” 
otherwise queries are separated by comma.   
       Figure 10 show a graph where the 32 queries were plotted 
versus the number of their usage in the experiment. We have 
found that 11 queries were not used, 12 queries were used only 
once, two queries were used exactly two times and seven 
queries were used more than two times. The erroneous programs 
used in this study do not capture all possible debugging 
scenarios; therefore; in order to conclude the usefulness of the 
unused 11 queries, the experiment need to be repeated on a 
wider range of erroneous programs. Gathering such programs is 
a difficult task since programmers rarely document the errors 
they make. The following seven queries were used the most: 
1. Q5: the enclosing environment for an exception. 
2. Q6: object state 
3. Q14: local variable history 
4. Q16: call chain 
5. Q20: history  of  arguments of method calls 
6. Q26: whether a given conditional statement executed or 

not. 
7. Q27: whether a given method called or not 

 

       To validate the usage of queries according to their 
categories, results of the experiment are restructured according 
to the category rather to individual queries. In another words, 
queries are counted according to the category they belong to. 
Figure 11 shows a graph the represents the number of times a 
category was used. Eisenstadt [6] had found that data gathering 
is the most predominant technique used in debugging. Our 
results agree with Eisenstadt’s finding. The query management 
category is not considered in this study due to the size and the 
simplicity of the subject erroneous programs. 
 
 Error Pattern Query 
E1 C-The Orphaned Thread Q23, Q24 
E2 OO-The Split Cleaner Q16, Q17, Q20 
E3 OO-The Imposter Type Q26 
E4 OO-The Broken Dispatch Q15, Q16 
E5 OO-The Liar View Q13 or Q17 or Q27 
E6 OO-The Double Descent Q5, Q6 
E7 OO-The Null Flag Q5, Q16 
E8 OO-The Dangling Composite Q9 
E9 OO-The Run-On Initialization Q5, Q6, Q16, Q30 
E10 OO-The Traveling Null Pointer Q5, Q10, Q11, Q16 

E11 OO-Sibling objects blunder Q6, Q20 
E12 OO-Language Lossage Q27 
E13 A-Logic Q20 , Q7 
E14 A-Off-By-One Q14 
E15 B-Expression  Q6, Q20 
E16 B-Expression Q18, Q26, Q27 
E17 B-Method Q20, Q21 
E18 B-Var  Q20 
E19 B-Var  Q14 
E20 D-Index  Q14 
E21 D-Limit  Q14, Q22 
E22 F-Init  Q6, Q29 
E23 F-Location Q14, Q26 
E24 F-Location Q18, Q27 

Table 1 
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5.2 Case Studies 
Case study 1: The Traveling Null Pointer 
       The Traveling Null Pointer bug pattern can be described 
as follows. A method call incorrectly returns a null pointer and 
the client of that method propagates the null pointer through a 
call chain, and finally a null pointer exception is thrown when 
the client code of the last call in the chain tries to de-reference 
the null pointer. In other words, the code that originates the null 
pointer and the code that de-references that pointer are far apart 
spatially and temporally. Figure 12 illustrate the Traveling null 
pointer bug pattern with Java code. The instance method 
“doSomeThing” in “FarAWayClass” returns a null pointer due 
to erroneous conditions. When this program is executed it 
reports a null pointer exception at line 14. 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

public class TheTravelingNullPointer { 
    public TheTravelingNullPointer() { 
  m1();  
    } 
    public void m1(){ 
         FarAWayClass o = new FarAWayClass(); 
         String result = o.doSomeThing(); 
         m2(result); 
    }  
    public void m2(String result){  
 mN(result);  
    } 
    public void mN(String result){ 
     if(result.equals("some result"))  
  System.out.println("some result");  
         else  
  System.out.println("other result");  
    } 
    public static void main(String[] args) { 
         new TheTravelingNullPointer(); 
    } 
} 
class FarAWayClass{ 
    public String doSomeThing(){  
         // some code that result in returning a null 
         return null; 
    } 
} 

Figure 12 

        Figure 13 shows the three queries used in debugging the 
Traveling Null Pointer program and their answers. Q1 query 
regarding the environment where the exception is throw. A1 
indicates that the enclosing method is mN whose single 
argument is null. The current question is where the null pointer 
originated and the call to the enclosing method occurred at event 
id 25. Q2 enquires full detail call chain starting from event id 0 
up to event id 25. A2 shows that method m1 called method m2 
that called method mN.  This initial call to main and the 
constructor is omitted for simplicity of presentation.    

       By investigating the arguments passed to m2 it is clear that 
it is also null. Method m2 is called from m1.  Method m1 is call 
at event id 8. When looking at the source code of method m1, 
the programmer concludes that the local variable “result” holds 
a null value since it is passed as the argument to m2. As this 
point all figures point to the method o.doSomeThing as the error 
source. To make sure that o.doSomeThing is returning null 
pointer, Q3 asks regarding all methods that were called before 

m2 in the same enclosing environment. A5 confirms that 
o.doSomeThing has returned null pointer. Now the origin of the 
null pointer has been located and isolated that is the beginning 
of the fixing stage. 
 
Q1 
 
 
 
A1 
 

where(exception( location( 'TheTravelingNullPointer.java', 14),     
                            _ , _ , _ , uncaught),  
           Environment). 
  
Environment =  
event(id(25), 
         methodcall(location('TheTravelingNullPointer.java',14), 
                            thread(main), 
                            instance('TheTravelingNullPointer',429), 
                            name(mN), 
                            arguments( [ value( null ) ] ) ) )  
 

Q2 
 
A2 

full_detail_call_chain( id(25) , id(0) , EventListOut ). 
 
event(id(25), 
          methodcall( location( ‘TheTravelingNullPointer.java’,14),     
                              thread(‘main’), 
                              instance( ‘TheTravelingNullPointer’,429),           
                              name(‘mN’), 
                              arguments( [ value(null) ] ))) 
 
event(id(23), 
          methodcall( location( ‘TheTravelingNullPointer.java’,11),   
                              thread(‘main’), 
                              instance( ‘TheTravelingNullPointe’r,429), 
                              name(‘m2’), 
                              arguments( [ value(null) ] ))) 
 
event(id(8), 
          methodcall(location( ‘TheTravelingNullPointer’.java,6), 
                             thread(‘main’), 
                             instance( ‘TheTravelingNullPointer’,429),           
                             name(‘m1’), 
                            arguments([ ]))) 
 

Q3 
A3 

pre_called_methods(id(23) , OutList ). 
[event(id(17), 
          methodcall( location('TheTravelingNullPointer.java',26), 
                              thread(‘main’), 
                              instance('FarAWayClass',431), 
                              name(‘doSomeThing’), 
                              arguments([ ]))), 
event(id(20), 
          methodexit(location('TheTravelingNullPointer.java',26), 
                             thread(‘main’), 
                             instance('FarAWayClass',431), 
                             name(‘doSomeThing’), 
                             value( null ) )),]  
 

Figure 13 

 

Case study 2: The Double Descent 
       The Double Descent bug pattern [1] is an example of 
erroneous processing of composite data structure. The program 
in Figure 14 builds a binary tree from random numbers and 
check to see if two adjacent nodes have zeros.  Tree is the super 
class of Leaf and Node and has two abstract methods: insert and 
hasAdjacentZeros which return true if the values stored in a 
node and one of its right or left children are zeros, otherwise it 
returns false. The for loop at lines 39-41 in the main method 
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constructs a tree of 52 Node instances and one instance of Leaf. 
The values of 50 instances are random numbers. Running the 
program while commenting out line 42 may throw a class cast 
exception. Running the program while line 42 is commented in 
will increase the chance for the exception to be thrown. 
       The class cast exception error message indicates that class 
cast exception occurred while executing line 32 within the 
hasAdjacentZeros method body. The double descent program 
will succeed in some cases where two zeros are generated 
among the random values. On the other hand the program will 
fail when recursion reaches a child that is a Leaf instance. When 
the search has to go all the way down the tree, the exception will 
be thrown. Line 32 shows the code that result in throwing the 
exception. It is clear that it only considers the children to be 
instances of Node and it does not account for leaf instances.  
       Query-based debugging can isolate this bug via 2 queries. 
Figure 15 shows the queries and their answers. The important 
answers are in bold and underlined. Q1 enquires about the 
environment where the exception occurred. A1 gives details 
about the enclosing method and the enclosing instance. The 
enclosing instance is a Node object its unique id is 558, and the 
enclosing method is hasAdjacentZeros that is defined in 
DoubleDescent.java at line 31. Q2 is a query about the state of 
Node object its unique id is 558 at event id 3246 that is the id of 
the call to the enclosing method. Investigating the object state 
shows that the right and left children are Leaf instances, and that 
accounts for the class cast exception. The id filed preceding the 
name in the instance filed is the id for the set-field event that 
assigned this filed the corresponding value. 

 

Q1 
 
 
 
 
 
A1 

| ?- where( exception( _ , _ ,  
                             instance( 'java.lang.ClassCastException' , _ ) , 
                             _ , 
                             uncaught )   ,  
            Environment).                         
 
Environment =  
event(id(3246), 
          methodcall(location('DoubleDescent.java',31),                      
                             thread(main),  
                             instance('Node',558) ,  
                             name(hasAdjacentZeros) ,  
                             arguments([]))) 

Q2 
 
A2 

| ?- object_state( id(3246), instance('Node',558), State).      
 
State = 
 [ 
 instanceField( id(3210) ,  
                                         name(right),              
                                         value(instance('Leaf',485)) ), 
                  instanceField( id(3208),  
                                         name(left) ,          
                                         value(instance('Leaf',485)) ), 
                  instanceField( id(3206),   
                                         name(value),   
                                         value(0) ) 
] 

 Figure 15 
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abstract class Tree {  
   public abstract boolean hasAdjacentZeros(); 
   public abstract void    insert(int v); 
} 
class Leaf extends Tree  {  
   public static final Leaf ONLY = new Leaf();  
   private Leaf(){ }  
   public void insert(int v){ 
      throw new UnsupportedOperationException( "Leaf.insert" ); 
   } 
   public boolean hasAdjacentZeros(){ return false; }  
} 
class Node extends Tree  {  
   public int value;  
   public Tree left , right;  
   public Node(int v){   
       value = v;    
       left = Leaf.ONLY ; 
       right = Leaf.ONLY ;  
    } 
    public void insert(int v) { 
        if (value < v){  
            if (right instanceof Leaf) { right = new Node(v); } 
            else { right.insert(v); } 
        }else{  
            if (left instanceof Leaf) { left = new Node(v); } 
            else { left.insert(v); } 
        } 
    }  
    public boolean hasAdjacentZeros(){  
       return value == 0 &&  
       (( (Node) left).value  == 0 ||  ( (Node)right).value == 0)   
        || left.hasAdjacentZeros() || right.hasAdjacentZeros();  
   } 
} 
public class DoubleDescent { 
   public static void main(String argv[ ]){ 
        Tree tree = new Node(500); 
        for(int i = 0 ; i < 4 ; i++){ 
          tree.insert((int)(Math.random() * 1000000)); 
        } 
        tree.insert(0); 
        tree.hasAdjacentZeros(); 
   } 
} 

 Figure 14 
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6. TOWARDS VISUAL QUERIES 
      Our goal to make query-based debugging accessible to the 
“average programmer” will not be fulfilled without defining an 
easy-to-use interface that allows the user to pose higher level 
declarative queries. This section gives the final picture of the 
proposed declarative debugging method. Currently a project to 
integrate JIVE and the JavaDD framework is under active 
development at the University at Buffalo. JIVE design is based 
on the following seven criteria for effective visualization of 
object oriented programs [11] 

1. Depict objects as environment of method execution. 
2. Provide multiple views of the execution state. 
3. Visualize history of execution and method interaction. 
4. Support forwards and backwards execution of programs 
5. Support queries on the runtime state. 
6. Produce clear and legible drawings. 
7. Uses exiting Java technologies. 
       The JIVE system provides multiple views: the object states 
at different levels of granularity, a sequence diagram to capture 
the history of execution and source code viewer to show the 
code being executed at the current point. In the remainder of this 
section we will show two examples on how to use JIVE as an 
interface to JavaDD. Screen shots presented in this section are 
taken using JIVE and manually edited to illustrate the 
declarative debugging technique. 

The Double Descent Revisited. The bug in the Double 
Descent program discussed in 5.2 can by found in two simple 
steps. The user just highlights the exception in the program 
output window and right clicks on the highlighted text, then 
selects the desired query as shown the lower left corner of 
Figure 16. The information obtained form the visual interface is 
then translated to Prolog query by JavaDD. Query answer is 
translated back to a visual answer by JIVE. The upper part of 
the figure indicates that the exception has occurred in object 
Node:558 which is surrounded by a circle. From the 
visualization it is clear that Node:558’s children are all leafs. 
The state of the Node 558 can be further inspected by right click 
on the contour diagram of the node and select a query from the 
list. The visual answer is given in the right left corner of the 
figure. The sate of Node:558 just before the exception is thrown 
is 0 as a value and the right and left children are leafs. 

       Consider a smaller version of the Double Descent program 
which builds a binary tree of 5 nodes that stores random 
generated numbers. The programmer wishes to know the values 
inserted in the tree. Figure 17 how such query can be posed 
declaratively. The user first highlights the member field “value”, 
then right clicks on the highlighted area and selects the field-
history query form the list. The visual query is translated to a 
field history query on the entire history starting from event 0 
and ending in event 136, also since the query is posed on the 
source  

 
 Object diagrams of the Double Descent program. 

 

  
output console state of object Node:558 

Figure 16 

  State ? 
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?- field_history( id(0) , id(136) , 
             instance('Node' , _ ),  
                            name( 'value'), 
                            HistoryList). 
 
HistoryList = [ 
 instanceField( id(11),   name(value), value(500) ) 
 instanceField( id(37),   name(value), value(458) ) 
 instanceField( id(61),   name(value), value(29) ) 
 instanceField( id(85),   name(value), value(544) ) 
 instanceField( id(112), name(value), value(333) ) 
] 
 

 
Figure 17 

code level the instance id is ignored so the query will be posed 
on all class instances. The lower part of the figure shows how 
the answer is translated to visual notation. The sequence 
diagram shows not only the values of the member filed, but also 
when this value was assigned. The horizontal axis list all objects 
according to the order of their instantiation; therefore, the 
environment where the assignments occurred can be inferred 
from the sequence diagram. 

7. CONCLUSIONS AND FUTURE WORK 
        
      We believe that our proposed paradigm of declarative 
debugging is a simple and effective method for debugging.  As 
noted earlier, we believe that both procedural and declarative 
forms of debugging are useful.   We presented many examples 
to show when declarative debugging is effective in eliciting 
information about object states and execution histories.  Our 
proposed query catalog is based upon an extensive study of 
errors in object oriented programs.  The visual interface for 
queries in the JavaDD framework frees the programmer from 
being burdened by using an unfamiliar textual query language, 
and provides many features that facilitate the debugging 
process. JavaDD can be easily interfaced from traditional 
debugger and as well as other visualization tools.        
      We have only sketched the visual interface for posing 
queries, and our current work is devoted to a full exploration of 
the visual interface.  We are also applying our declarative 
debugger to larger programs, in order to gain a better 
understanding of the methodology and its potential limitations.  
We are also exploring the performance characteristics of the 
declarative debugger both in terms of the space and time needed 
for various types of queries. 
      An interesting dimension of future work is to explore the 
coupling among queries. For example, if Qi and Qj are coupled, 
then whenever Qi is used there is a good likelihood that Qj is 
also used. The coupling suggests composing Qi and Qj into one 
query. Another dimension to investigate is the relation between 
a set of queries and a recurring bug pattern. If such relation 
exists then combined with dynamic and static analysis there is a 
possibility for an expert system that can help in isolating bug 
patterns automatically. 
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A. APPENDIX  

 
 

 
event( id( 0 ) , threadstart( thread( 'Signal Dispatcher' ) , threadgroup( 'system' ))). 
event( id( 1 ) , threadstart( thread( 'main' ) , threadgroup( 'main' ))). 
event( id( 2 ) , memberfields( thread( 'main' ) , classname( 'DoubleDescent') , [  ] )). 
event( id( 3 ) , methodcall( location( 'DoubleDescent.java' , 46 ) , thread( 'main' ) , classname( 'DoubleDescent') , name( 'main' ) , arguments([ value(    
                                           instance( 'java.lang.String[]' , 459 ))  ]) )). 
event( id( 4 ) , datastructure( instance( 'java.lang.String[]' , 459 ) , contents([ ]))). 
event( id( 5 ) , memberfields( thread( 'main' ) , classname( 'Tree') , [  ] )). 
event( id( 6 ) , memberfields( thread( 'main' ) , classname( 'Node') , [  instacefield( 'value' ), instacefield( 'left' ), instacefield( 'right' )  ] )). 
event( id( 7 ) , methodcall( location( 'DoubleDescent.java' , 16 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( '<init>' ) , arguments([ value( 500)  ]) )). 
event( id( 8 ) , methodcall( location( 'DoubleDescent.java' , 1 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( '<init>' ) , arguments([ ]) )). 
event( id( 9 ) , methodexit( location( 'DoubleDescent.java' , 1 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( '<init>' ) , 'void' )). 
event( id( 10 ) , step( location( 'DoubleDescent.java' , 17 ) , thread( 'main' ) , [ ])). 
event( id( 11 ) , setfield( location( 'DoubleDescent.java' , 17 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( 'value' ) , value( 500))). 
event( id( 12 ) , step( location( 'DoubleDescent.java' , 18 ) , thread( 'main' ) , [ ])). 
event( id( 13 ) , memberfields( thread( 'main' ) , classname( 'Leaf') , [  classfield( 'ONLY' )  ] )). 
event( id( 14 ) , methodcall( location( 'DoubleDescent.java' , 6 ) , thread( 'main' ) , classname( 'Leaf') , name( '<clinit>' ) , arguments([ ]) )). 
event( id( 15 ) , methodcall( location( 'DoubleDescent.java' , 7 ) , thread( 'main' ) , instance( 'Leaf' , 476 ) , name( '<init>' ) , arguments([ ]) )). 
event( id( 16 ) , methodcall( location( 'DoubleDescent.java' , 1 ) , thread( 'main' ) , instance( 'Leaf' , 476 ) , name( '<init>' ) , arguments([ ]) )). 
event( id( 17 ) , methodexit( location( 'DoubleDescent.java' , 1 ) , thread( 'main' ) , instance( 'Leaf' , 476 ) , name( '<init>' ) , 'void' )). 
event( id( 18 ) , methodexit( location( 'DoubleDescent.java' , 7 ) , thread( 'main' ) , instance( 'Leaf' , 476 ) , name( '<init>' ) , 'void' )). 
event( id( 19 ) , setfield( location( 'DoubleDescent.java' , 6 ) , thread( 'main' ) , classname( 'Leaf') , name( 'ONLY' ) , value( instance( 'Leaf' , 476 )))). 
event( id( 20 ) , methodexit( location( 'DoubleDescent.java' , 6 ) , thread( 'main' ) , classname( 'Leaf') , name( '<clinit>' ) , 'void' )). 
event( id( 21 ) , step( location( 'DoubleDescent.java' , 18 ) , thread( 'main' ) , [ ])). 
event( id( 22 ) , setfield( location( 'DoubleDescent.java' , 18 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( 'left' ) , value( instance( 'Leaf' , 476 )))). 
event( id( 23 ) , step( location( 'DoubleDescent.java' , 19 ) , thread( 'main' ) , [ ])). 
event( id( 24 ) , setfield( location( 'DoubleDescent.java' , 19 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( 'right' ) , value( instance( 'Leaf' , 476 )))). 
event( id( 25 ) , step( location( 'DoubleDescent.java' , 20 ) , thread( 'main' ) , [ ])). 
event( id( 26 ) , methodexit( location( 'DoubleDescent.java' , 20 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( '<init>' ) , 'void' )). 
event( id( 27 ) , step( location( 'DoubleDescent.java' , 46 ) , thread( 'main' ) , [ ])). 
event( id( 28 ) , step( location( 'DoubleDescent.java' , 47 ) , thread( 'main' ) , [ localvariable( name('tree') , value( instance( 'Node' , 474 )))  ])). 
event( id( 29 ) , methodcall( location( 'DoubleDescent.java' , 22 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( 'insert' ) , arguments([ value( 400)  ]) )). 
event( id( 30 ) , step( location( 'DoubleDescent.java' , 30 ) , thread( 'main' ) , [ ])). 
event( id( 31 ) , step( location( 'DoubleDescent.java' , 31 ) , thread( 'main' ) , [ ])). 
event( id( 32 ) , methodcall( location( 'DoubleDescent.java' , 16 ) , thread( 'main' ) , instance( 'Node' , 477 ) , name( '<init>' ) , arguments([ value( 400)  ]) )). 
event( id( 33 ) , methodcall( location( 'DoubleDescent.java' , 1 ) , thread( 'main' ) , instance( 'Node' , 477 ) , name( '<init>' ) , arguments([ ]) )). 
event( id( 34 ) , methodexit( location( 'DoubleDescent.java' , 1 ) , thread( 'main' ) , instance( 'Node' , 477 ) , name( '<init>' ) , 'void' )). 
event( id( 35 ) , step( location( 'DoubleDescent.java' , 17 ) , thread( 'main' ) , [ ])). 
event( id( 36 ) , setfield( location( 'DoubleDescent.java' , 17 ) , thread( 'main' ) , instance( 'Node' , 477 ) , name( 'value' ) , value( 400))). 
event( id( 37 ) , step( location( 'DoubleDescent.java' , 18 ) , thread( 'main' ) , [ ])). 
event( id( 38 ) , setfield( location( 'DoubleDescent.java' , 18 ) , thread( 'main' ) , instance( 'Node' , 477 ) , name( 'left' ) , value( instance( 'Leaf' , 476 )))). 
event( id( 39 ) , step( location( 'DoubleDescent.java' , 19 ) , thread( 'main' ) , [ ])). 
event( id( 40 ) , setfield( location( 'DoubleDescent.java' , 19 ) , thread( 'main' ) , instance( 'Node' , 477 ) , name( 'right' ) , value( instance( 'Leaf' , 476 )))). 
event( id( 41 ) , step( location( 'DoubleDescent.java' , 20 ) , thread( 'main' ) , [ ])). 
event( id( 42 ) , methodexit( location( 'DoubleDescent.java' , 20 ) , thread( 'main' ) , instance( 'Node' , 477 ) , name( '<init>' ) , 'void' )). 
event( id( 43 ) , step( location( 'DoubleDescent.java' , 31 ) , thread( 'main' ) , [ ])). 
event( id( 44 ) , setfield( location( 'DoubleDescent.java' , 31 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( 'left' ) , value( instance( 'Node' , 477 )))). 
event( id( 45 ) , step( location( 'DoubleDescent.java' , 34 ) , thread( 'main' ) , [ ])). 
event( id( 46 ) , step( location( 'DoubleDescent.java' , 37 ) , thread( 'main' ) , [ ])). 
event( id( 47 ) , methodexit( location( 'DoubleDescent.java' , 37 ) , thread( 'main' ) , instance( 'Node' , 474 ) , name( 'insert' ) , 'void' )). 
event( id( 48 ) , step( location( 'DoubleDescent.java' , 47 ) , thread( 'main' ) , [ localvariable( name('tree') , value( instance( 'Node' , 474 )))  ])). 
event( id( 49 ) , step( location( 'DoubleDescent.java' , 49 ) , thread( 'main' ) , [ localvariable( name('tree') , value( instance( 'Node' , 474 )))  ])). 
event( id( 50 ) , datastructure( instance( 'java.lang.String[]' , 459 ) , contents([ ]))). 
event( id( 51 ) , methodexit( location( 'DoubleDescent.java' , 49 ) , thread( 'main' ) , classname( 'DoubleDescent') , name( 'main' ) , 'void' )). 
event( id( 52 ) , threaddeath( thread( 'main' ) , threadgroup( 'main' ))). 
event( id( 53 ) , threadstart( thread( 'DestroyJavaVM' ) , threadgroup( 'main' ))). 
event( id( 54 ) , threaddeath( thread( 'DestroyJavaVM' ) , threadgroup( 'main' ))). 

 
 

  
Figure 18: JEL Example for the Double Descent program. 
The binary tree has two nodes which stores 500 and 400. 
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Table 2 

 Query Purpose Domain Range 

Q1 Where a member field is set to a new 
value? 

Q2 Where a member field is accessed? 
Q3 Where a member method is called? 
Q4 Where an object is instantiated? 

Q5 Where an exception is thrown or 
caught? 

To know the environment where the event 
occurred 
 

The Entire History 
Class and a static method call 
or  an object and instance 
method call 

Q6 Object state To know member fields values 

History between 2 event ids 
specified by the user or 
between the id of the object 
instantiation event and id 
specified by the user 

Set of triplets of Field value , 
filed name and event id when 
the field was set to a new 
value 

Q7 Contents of data structure. To know the values stored in an array or a 
collection instance 

List of pairs. Each pair has an 
index and value. 

Q8 Method arguments  To know the arguments of a given method 
call List of values 

Q9 Value returned from a method call To know the returned value from a method 
call 

Specific event 

Void or a value 

Q10 Local variable value prior to the 
execution of an event 

To know the value of a local variable just 
before the execution of an event 

Local variable name and its 
value 

Q11 The pre-called methods 
To group methods that were called before 
the execution of an event within the same 
environment 

Execution history between a 
specific event and the event  
of the enclosing method call 

A set of pairs. Each pair has a 
method call event and a 
method exit event 

Q12 Local variable value after the 
execution of an event 

To know the value of a local variable just 
after the execution of an event 

Local variable name and its 
value 

Q13 The post-called methods 
To group methods that were called after the 
execution of an event within the same 
environment 

Execution history between a 
specific event and the event 
when the  enclosing method 
returns 

A set of pairs. Each pair has a 
method call event and a 
method exit event 

Q14 Local variable value history To understand loop execution 

Execution history between the 
event of a enclosing method 
call and event  when the 
enclosing method exists.  

A set of values 

Q15 Compare 
To know the difference between multiple 
similar query answers such data structure 
contents, call chain, and field history 

Multiple similar query 
answers Set of the elements that differ 

Q16 Method call chain 
 

To group method calls according to call 
chain A set of method call events 

Q17 Methods in a call tree To group method calls according to a call 
tree 

A set of pairs. Each pair has a 
method call event and a 
method exit event 

Q18 Member field value history To know values assigned to a member filed 
Set of pairs. Each pair has the 
field value and event id where 
the field was set to that value 

Q19 History of contents of data structure. To know the contents of data structure at 
different points 

A set of sets of pairs. Each 
pair has index and value 

Q20 History  of  method arguments 
Set of pairs. Each pair has the 
event id and a list of 
arguments 

Q21 History of method return value 

To group calls to the same method. Useful 
in understanding recursive methods. Set of pairs. Each pair has the 

event id and a value 

Q22 Class instances and their states. 
To investigate the state of a group of 
instances of the same class. Useful in 
inspecting a user defined data structure 

Set of object state. Each object 
state is a set of triplets of 
member field name, value and 
event id where the assignment 
occurred 

Q23 Running Treads To know the running threads 
Q24 Exited Treads To know the exited  threads 
Q25 Suspended Threads To know the suspended threads 

Set of pairs. Each pair has 
thread name and thread group 

Q26 Was a given conditional statement 
executed? 

Q27 Was a given method called? 
Q28 Was a member field assigned? 

Q29 Is there an instance of a specific 
class? 

Q30 Was a specific exception caught? 
Q31 Is a given thread still running? 
Q32 Has a given thread exited? 

To know whether such event occurred or 
not 

History between 2 event ids 
specified by the user 

event Id where it occurred or 
No other wise 


