
 1

JavaDD: a Declarative Debugger for Java
Hani Z. Girgis Bharat Jayaraman

Department of Computer Science and Engineering

University at Buffalo, the State University of New York
{hzgirgis,bharat}@cse.buffalo.edu

ABSTRACT
This paper presents a declarative approach to the debugging of
object-oriented programs and illustrates the methodology
through an extension of a novel interactive visualization system
for Java developed in our previous research. Unlike traditional
“procedural” debugging, we use the term “declarative
debugging” to refer to a flexible set of queries on individual
execution states and also over the entire history of execution (or
portion of the history). Examples include queries to find all
values assigned to a variable over its life-time; which variable
has a certain value; the calling sequence that results in a certain
outcome; whether a certain statement was executed; etc. These
queries were arrived at by a systematic study of errors in object-
oriented programs in our previous research. Our proposed
system, JavaDD, maintains the execution history as a relational
database of salient events, such as method call/return, thread
start/end, variable assignment, etc. An important property of
our approach is that these queries can be posed interactively (at
any step of execution), and there is no need to develop a
compiler to instrument the source code, as in related research
projects. Furthermore, we also sketch a visual interface so that
both queries and answers can be composed using inituitive
object and sequence diagrams. We believe such an approach is
a significant contribution to the art of program debugging. We
present the architecture of JavaDD, a detailed catalog of our
queries and their translation, and several examples illustrating
the approach. We also compare our approach related research
efforts in the area of query-based analysis of object-oriented
programs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging -
Debugging aids - Tracing.

General Terms
Design, Human Factors, Languages

Keywords
Bug patterns, Java, query-based debugging, execution history,
object/sequence diagrams, relational databases, visual interfaces

1. INTRODUCTION

 Traditional debugging is a “procedural” process in that the
programmer has to proceed in step-by-step and object-by-object
in order to uncover the cause of a bug. To facilitate this
process, programming environments have evolved considerably
in the past three decades in order to provide increasingly better
tools and techniques: break points, source code stepping, back
traces, object inspectors, variable spying, watch points, etc.
Modern IDEs, such as Eclipse, NetBeans, and Visual Studio,
also provide similar capabilities. In recent years, there have
been richer execution environments, such as the JIVE system
for Java [11][11][12][13], BlueJ [22], jGRASP [16], and MVT
[24]. Still, the debugging paradigm for object-oriented
languages such as Java is fundamentally procedural in nature.

 In this paper, we propose a declarative approach to the
debugging of object-oriented programs, and we illustrate our
methodology through a system called JavaDD, for Java
Declarative Debugger. This work extends our earlier research
on the JIVE system for Java, which supports forward and
reverse program stepping, and visualizing execution states and
histories using enhanced object diagrams and time-sequence
diagrams at varying levels of granularity. The term
‘declarative’ contrasts from ‘procedural’ in that the former
focuses on ‘what’ while the latter focuses on ‘how’. We use the
term ‘declarative debugging’ to refer to a broad set of queries
over the current execution state as well as the history of
execution. Declarative debugging complements procedural
debugging, and we expect that both forms of debugging will be
used in the general case.

 To illustrate declarative debugging, note that a crucial
aspect of program understanding is knowing how variables take
on different values during execution. The use of print
statements is the standard “procedural” way of eliciting this
information. This is a classic case of the need to query over
execution history. As another example, consider a parse tree
composed of, say, 1000 nodes. While searching for nodes that
satisfy some criteria, an exception is thrown. Debugging this
program via traditional debuggers is tedious since there are 1000
node instances and possibly tens of thousands of method calls.
Therefore, single-stepping is not a viable technique. Inserting
break points is also not helpful, since the code that is
responsible for the search is recursive. On the other hand, using
declarative debugging we can isolate the bug via two queries:
first, find the environment (object and method call instances)
where the exception is thrown; and, second, query the object
instance when the exception is thrown. These two queries are
used in many different debugging scenarios. For example,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’06, October 22–26, 2006, Portland, Organ, USA.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

 2

instead of searching for the environment of a thrown exception,
the programmer can ask for the environment of a member field
assignment or a method call.

 In keeping with the JIVE philosophy for program
visualization, we propose two broad categories of declarative
debugging queries in this paper: (i) queries over individual
execution states, where each state consists of the set of active
objects and outstanding method invocations, and (ii) queries
over the entire history of execution, or a subset of the history.
Examples of (i) include queries about an object or a variable and
its value, call chains, etc. Examples of (ii) include queries about
all values assigned to a variable over its history, whether a
particular statement was ever executed or not; etc. The need to
query sub-histories is especially useful when debugging
interactive programs with GUIs, since each interaction episode
corresponds to a well-defined sub-history. We arrived at our
queries by a study of the types of errors that arise in object-
oriented programs [12][13]. Our proposed system has the
ability to filter system objects so that a programmer may focus
on the objects explicitly created by his or her program.

 This paper also describes the architecture of JavaDD along
with a detailed catalog of queries and their translation in terms
of a deductive database system built in Prolog. We log the
history of salient events (method call, return, assignment, object
creation, etc) during the execution of a Java program using the
JPDA interface (Java Platform Debugger Architecture). Such an
approach allows us to avoid instrumenting the source program
with debugging commands or queries, as in other related
approaches [14][23][25], and enables a completely modular
approach to declarative debugging. It is important to also note
that our declarative debugger is interactive, and hence queries
can be posed at any point during program execution. Our
approach to recording the history of changes is incremental in
nature, i.e., when a variable is assigned, we save only the
previous value assigned to the variable. Thus, queries about
previous execution states involve some state reconstruction.
The benefit of this approach is that forward execution incurs no
appreciable slowdown.

 To complete the paper, we also sketch a visual interface so
that both queries and answers can be composed in terms of a
framework of object and time-sequence diagrams , source code
and program output. In this way, a programmer is relieved of
the burden of composing queries in an unfamiliar query
language. Thus the contributions of our paper are: (i) a
methodology for a Java declarative debugger without requiring
source code instrumentation and using off-the-shelf Java
compiler and JVM, (ii) the provision of queries over individual
states and the history of execution, (iii) a higher-level visual
interface for queries and answers. Taken together, we believe
that this proposed approach of declarative debugging is a
significant contribution to field of object-oriented program
debugging.

 The remainder of the paper is organized as follows. Section
2 surveys closely related research and compares them with our
work. Section 3 presents the architecture of the Java DD
system, including the event log language. Section 4 presents
our declarative queries for debugging. Section 5 provides an
evaluation of our approach, by first presenting an empirical
survey of errors in object-oriented programs followed by two

short case studies. Section 6 sketches the visual query interface
for presenting and observing answers. Section 7 presents
conclusions and areas of further research.

2. RELATED WORK

 Three recent research projects employ the concept of
declarative queries for program analysis [23], [25], and [14].
An important difference in our approach is our emphasis on
interactive debugging and without having to develop a compiler
to perform source code instrumentation or modify the JVM:
1. Lencevicius et al [23] proposed a query-based debugger to

understand object relationships. Their query language is
expressed in the same language as the target OO language
(Self), and thus a programmer does not need to learn a new
language. Queries consist of a search domain and a
constraint. Both the compiler and the underlying virtual
machine need to be modified to realize the query
semantics. In query-based debugging of [23], a query
evolution can result in side effects on program state, and
might introduce bugs and hence their result may not reflect
the actual state of the program. On the positive side, this
approach can provide incremental delivery of results, a
feature that is useful in dealing with queries that takes
considerable time to find all answers.

2. Recently, PQL (Program Query Language) was developed
by Martin et al [25] to query over program execution for
finding errors and security flaws in programs. Queries may
formulate application-specific code patterns that may result
in vulnerabilities at run-time. The queries translated to
Datalog (which is essentially declarative Prolog without
functors), and provides the ability to take an action once a
match found. A combination of static and dynamic
analysis is performed to answer queries. The PQL
compiler generates code that is weaved into the target
application and matches against a history of relevant events
at execution time. A number of interesting security
violations are found by this technique.

3. Goldsmith et al [14] proposed the PTQL (Program Trace
Query Language) as a relational query language designed
to query program trace. Similar in goals with PQL, PTQL
employs an SQL-like query language. Partiqle compiles
the PTQL queries into instrumentation in a given Java
program. PTQL queries can be used to specify what to be
recorded during program execution, and hence this
technique can be effective with programs that generate
many irrelevant events.

 WhyLine [21] is an interrogative debugger for the Alice
programming environment. It allows the user to ask why or
why didn’t a given event occur. The WhyLine gives the answer
in the form of an execution path that leads or was supposed to
lead to the execution of the given event. The path is annotated
with control flow information. The ‘why’ and ‘why not’
questions reduce to the question whether an execution path
leading to the given event exists or not. In our work, we
provide queries on call-chains, call-trees, and sub-histories in
order to extract similar information as in WhyLine.

 3

 Pauw et al. [31] proposed a catalog of views to describe
patterns in program behavior and provided the Object Visualizer
system to dynamically visualize object oriented programs via
the proposed views. The proposed views are macroscopic views
that help in understanding the overall program execution;
however, the debugging process requires microscopic views
that provide more details as well. The catalog presented in [31]
is composed of seven views and can be summarized as follows.
1. Allocation matrix displays the instantiation relation among

objects i.e. which objects result in the instantiation of other
objects.

2. Class-time chart groups method call according to their
class in relation to time.

3. Functions-instances matrix groups method calls according
to their instance .

4. Histogram of instances groups objects by class.
5. Inter-Class call cluster shows the coupling among classes.
6. Inter-class call matrix provides an overall view of object

interactions grouped by class.
7. Intra-class call matrix groups for each object calls to

methods defined in its own class.
 The absence of a methodology for querying Java program
execution was recognized in our earlier work [12] on the JIVE
system. JIVE visualizes the entire history of execution, and
provides three views: the time-sequence diagram which depicts
the interaction among objects in relation to time; the object
diagram which shows the state of objects; and the source code
view that highlights the executed line. We have proposed the
following seven queries: value of a variable; the variable that
holds a certain value or range of values; arguments to a method
call; the number of times a method is called, a statement is
executed, or a class is instantiated; and the last activity of an
object. However, this set provides a limited support for
practical debugging. Faced with the lack of methodology of
querying the execution history, an empirical study has been
conducted to understand the difference in visualization of
correct and erroneous programs [13]. This study provided a set
of queries which have been formulated in the methodology
presented in this paper.

 Rosenblum [34] investigated why programming with
assertions was not widespread industry wise. Two reasons were
found. First, assertion preprocessors did not work well with the
available development tools and that did not meet the need of
the “average software developer.” The second reason was the
lack of studies on types of assertions that can guard effectively
against known error patterns. Rosenblum proposed a method of
programming with assertions based on an empirical study of
software interface faults of C programs by Perry and Evangelist
[32]. He proposed an assertion to guard against each kind of
errors. His research contributed a classification of assertions
under two main categories: assertions related to functions
interfaces and assertions related to functions implementation.

 Query-based debugging and programming with assertions
or design-by-contract (DBC), in general, are both concerned
with finding and signaling erroneous program behavior. Our
approach is similar to Rosenblum’s in two aspects. Both
approaches are based on empirical studies of software errors.
Rosenblum’s method of programming with assertion and our
method of query-based debugging aim to make the technique
easy enough so that an “average developer” can use it by

providing a catalog of commonly used assertions and queries
respectively. Our work differs in that it is concerned with object
oriented programs while Rosenblum work was done on C
programs.

 Gamma et al [8] have proposed a collection of design
patterns that aimed at showing how to design object oriented
programs. Fowler et al [7] have proposed a catalog of re-
factoring object oriented programs. Providing a collection of re-
factoring techniques in OO programs opened the possibility for
automatic re-factoring tools. Meyers [29] and Bloch [5]
presented a collection of best practices in programming in C++
and Java respectively. Several static analysis tools [35][17]
exist to enforce best practices as outlined by Meyers and Bloch.
Following the same path a collection of debugging queries will
contribute to the rise of automated query-based (declarative)
debuggers.

3. JAVA DD ARCHITECTURE

 One of the potential obstacles in declarative debugging is
that an execution history of large-scale software that runs for
some time may have millions of events that demand large-scale
database server. Consider a scenario when a developer is
running an IDE, such as Eclipse, and has started a debugger
based on the JavaDD framework. The JavaDD will invoke a
JVM and interact with the database server that is running on the
same machine. At this point the IDE, the JVM, and the database
server are all competing for memory. A centralized debugger
based on JavaDD would not be practical solution in that
scenario, and hence we propose a distributed architecture. The
distributed architecture opens the opportunity to provide
debugging and analysis services.

3.1 System Tiers and Components
 We have implemented a prototype of the JavaDD
framework, and Figure 1 shows the main tiers and components
of this framework. The architecture of JavaDD is a composed
of four tiers. The first tier consists of three components: The
JPDA, Prolog Beans server and relations specification. JPDA
the Java Platform Debugger Architecture [18] is designed as a
distributed system that can interface with a JVM running on the
same machine or a different machine. JPDA has an event-based
architecture. Prolog Beans [33] is a Prolog server that can be
interfaced with Java or .Net. The client-server architecture of
Prolog Beans allows the server to be a component of a
distributed system. Prolog Beans was designed to handle large
applications.
 The second tier is composed of two components: the
Logger and the Query Manager. Once the Logger receives a
Java program it starts a JVM and subscribes for the desired
events with the JPDA. It is also possible (but not implemented
in the current prototype) that the Logger interacts with an
already running JVM. Query Manager is responsible for
constructing Prolog goals (queries) based on the invoked
method and the passed arguments and sending the constructed
goals to the Prolog Beans server. Once Query Manger receives
answers, it forwards them back to the Tools Interface. In the
case when the Query Manager receives a request to add a

 4

composite query, the query has to go through some security
checks. Then the query is tested against standard execution
history. The user is notified by an error message or the results of
the saved composite query.
 The third tier is composed form only one component: the
Tools Interface which is a façade for the JavaDD Framework.
The rational behind this design is that the framework is under
continuous development and evaluation; therefore, a specific
implementation may need to be replaced by another efficient
implementation. Another example, we may wish to switch from
Prolog Beans to a SQL server. The fourth tier has only one
component: the User Interface that interacts with the Tools
interface.

3.2 JEL: Java Events Log
 JEL extends the work that JIVE and JyLog [19] have
implemented similar recording techniques based on logging in
XML. JEL describes the basic events in program execution
history and can be easily modified to include a sophisticated
description of static and dynamic information about a given
program. The implemented prototype supports the description of

10 events: method call, method exit, set field, get field, data
structure contents, exception, step, thread start, thread end, and
member fields. Figure 2 shows part of the BNF grammar of
JEL. Appendix A gives a full execution history in JEL for a
binary search tree program. The remainder of this section gives
more details about individual events. Each event has a unique id
in addition to other specific information; objects are identified
by their class and a unique id.

• Method call event records information about a method
call. The event describes the source code location of the
first executable line of the method body, the thread within
which the invocation occurred, the class or the instance
that this method was invoked on, method name, and

method arguments.

• Method exit event records similar information as method
call event. Method exit event records the returned value of
the method call instead of the arguments.

• Set Field event records information about the thread
where this event occurred, the source location where the
field was set to a new value, the instance or the class

Figure 1

Figure 2: JEL BNF grammar

<events>
<event>
<execution-event>

<info>
<method-call>
<method-exit>
<set-field>
<get-field>
<data-structure>
<exception>
<step>
<class-prepare>
<thread-start>
<thread-death>

::= event*
::= event ‘(’<id> , <execution-event> ‘)’ ‘.’
::= <class-prepare> | <method-call> | <method-exit> | <set-field>
 | <get-field> | <data-structure> | <exception>
 | <step> | <thread-start> | <thread-death>
::= <location> , <thread>
::= methodcall ‘(’ <info> , (<instance> | <class>), <name>, <arguments> ‘)’
::= methodexit ‘(’ <info> , (<instance> | <class>), <name>, <value>‘)’
::= setfield ‘(’ <info> , (<instance> | <class>), <name>, <value>‘)’
::= getfield ‘(’ <info> , (<instance> | <class>), <name> ‘)’
::= datastructure‘(’ <info> , <contents>‘)’
::= exception ‘(’ <info> , <instance> , <message> , (<location> | uncaught) ‘)’
::= step ‘(‘ <info> , <local-variable-list> ’)’
::= memberfields ‘(’ <thread> , <class> , <member-fields> ‘)’
::= threadstart ‘(‘ <thread> , <thread-group> ’)’
::= threaddeath ‘(‘ <thread> , <thread-group> ’)’

Tools
Interface

JPDA
Java

Platform
Debugger

Architecture

Prolog Beans

Query
Relations in

Prolog

Logger

User
Interface

Java
Program

Query

Answer

Query
Manager

Developer

 5

where this field is assigned to a new value and the new
value.

• Get Field event records similar information as the set
field event without providing the value of the field.

• Data Structure event is recorded after a method entry
event and method exit event, and also after a set field
event if the type of the field being assigned a new value is
a data structure, and at user defined break points. The data
structure can be array or a Collection instance. The event
describes the source code information of the event
targeted the recording of the data structure.

• Step event describes the thread and the source code
location information in addition to names and values of
visible local variables in each step. The program control
flow can be inferred form step events.

• Exception event records information about the thread in
which this exception is thrown or caught, the source code
location, the exception instance, the exception message,
and the catch location if it is caught or the uncaught
keyword other wise.

• Thread Start and Thread Death events record the
starting or the ending of a thread. The thread group is also
recorded.

• Class prepare event records information regarding
member fields and methods of a given class. Currently
only recording member fields is implemented.

4. DECLARATIVE DEBUGGING

 Declarative debugging is based upon a query catalog and
execution history, which is recorded as a database. The database
is populated by entries corresponding to execution events which
are specified by JEL. Figure 3 gives the basic relations defined
in the database schema.

Relation Fields
methodcall location, thread, instance-class, name, arguments

methodexit location, thread, instance-class, name, returned-value

setfield location, thread, instance-class, name, value

getfield location, thread, instance-class, name

datastructure location, thread, contents

exception location, thread, instance, message, caught-uncaught

step location, thread, variables

classprepare thread, class, member-fields

threadstart thread, thread-group

threaddeath thread, thread-group

Figure 3

 The query catalog given in Table 2 in Appendix A can be
organized under three categories: queries on specific events,
queries on execution history, and query management. Section
4.1 discusses queries on specific events. There are five kinds of
queries over the execution history and are illustrated in section

4.2. Query management techniques are discussed in section 4.3.
Table 2 in Appendix A gives an overview of the query catalog.

4.1 Queries on Specific Events

Query Where an Event Occurred. In object-oriented
programming, execution events occur within an environment.
An environment is an instance object and an instance method
invocation or else it is a class and a static method invocation.
This environment represents the enclosing environment for an
event. The instance or the class is referred to as the enclosing
instance or enclosing class and the method is referred to as the
enclosing method for the event. The enclosing environment for
a given event can be obtained by the where query given in
Figure 4 for the following five events: set field event, get field
event, method call event, object instantiation event which is
recorded as method call event to the method <init> and
exception event.

/* Find the enclosing environment: the enclosing method */
/* and the enclosing class or instance for a given event */

where(Event, event(id(CallID) , EnclosingEnvironment)):-
 event(id(ID) , Event),
 enclosing_method(id(ID) , id(CallID) , _),
 event(id(CallID) , EnclosingEnvironment).

Figure 4: The ‘ where’ query

Example 1: Where did a field assignment occur?

 Consider the WhereExample program given in Figure 5.
Class WhereExample has a static member field d which is
assigned in method m and in the constructor of the HelperClass.
The programmer wishes to know where the member field d is
assigned. Q1 in Figure 6 shows how to query about the
enclosing environment in which the member field d was
assigned to any value. Results are returned in the Environment
variable which is the enclosing method call event. A1 gives the
answer to Q1 indicating that the assignment occurred in a call to
method m in instance of WhereExample whose unique id is 417
and in the constructor of an instance of HelperClass whose id is
425. In some debugging scenarios, the question where a field
was assigned a specific value arises. Q2 asks where field d was
assigned to an instance of Double whose int value is 22.56.

1
2
3
4
5
6
7
8
9
10
11
12

public class WhereExample {
 public static Double d;
 public WhereExample() { m(); }
 public void m(){ d = new Double(22.56); }
 public static void main(String[] args) {
 WhereExample example = new WhereExample();
 HelperClass helper = new HelperClass();
 }
}
class HelperClass{
 public HelperClass(){ WhereExample.d = new Double(100.00);
}

 Figure 5

 6

| ?- where(setfield(_ , _ , classname('WhereExample') ,
 name('d') , _),
 Environment).

Environment =
event(id(7),
 methodcall(location('WhereExample.java',4) ,
 thread(main) ,
 instance('WhereExample',417) ,
 name(m) ,
 arguments([])))
Environment =
event(id(19),
 methodcall(location('WhereExample.java',11) ,
 thread(main) ,
 instance('HelperClass',425) ,
 name('<init>') ,
 arguments([])))

Q1

A1

Q2

A2

| ?- where(setfield(_ , _ , classname('WhereExample') ,
 name('d'),
 value(instance('java.lang.Double' , _,
 value('22.56’)))),
 Environment).

Environment =
event(id(7),
 methodcall(location('WhereExample.java',4) ,
 thread(main) ,
 instance('WhereExample',417) ,
 name(m) ,
 arguments([])))

 Figure 6

Query the State of an Object. Querying the state of an
object is concerned with the encapsulation aspect of object-
oriented programming. The state of an object is captured in the
values of its member fields and public and protected member
fields of its super classes. Querying the state of an object helps
in verifying class invariant. Case study 2: The Double Descent
gives an example where investigating the state of an object
revealed the reason for the program to throw a class cast
exception.

Query To Validate Contracts. In design-by-contract
[27][28][30] the client has to meet preconditions or specific
requirements in order to be able to call a certain method. These
requirements are usually constraints on the arguments and the
state. Our method generalizes the requirement to be imposed on
any execution event and not only on method calls as in DBC.
Thus those requirements are candidate queries. There are three
factors that can affect the execution of a given event within the
enclosing method. These factors can be considered as the
requirement for an event.
1. Arguments values
2. The returned value of all preceding method calls to a given

event within the same enclosing method
3. Local variable values before the execution of the event

Analogously, the post-condition in DBC is the effect that

the called method promises upon it is completion. Our
methodology generalizes this idea to all executed events. The

effect of the execution of an event on the enclosing method can
appear in the following three areas.
1. The returned value of the enclosing method
2. Methods that have been called after the execution of the

event within the same enclosing method
3. Local variables values after the execution of the event
 DBC fails to specify directly that some other methods need
to be called before or after a given method. Having recorded the
execution history it is possible to inspect whether a certain
method(s) has been called before or after a given event. Case
study in section 5.2 discusses the application of these queries.

Group Method Calls according to Call Chain. Compared
with the traditional procedural paradigm, the object-oriented
paradigm engenders the use of many small methods and greater
method interaction. Thus, posing queries regarding the
interaction between objects is essential in the debugging process
and in the understanding of object oriented programs in general.
A method call can be viewed as a message whose content is the
passed arguments. Each message has a response which is the
returned value or void. A message can have no response if it
exits abnormally, i.e. throws an exception. Call chain can serve
as a proof of certain execution or as a way to inspect argument
values propagated through the chain of calls. Case study 1: The
Traveling Null Pointer discussed in section 5.2, shows how the
call chain query is effective in locating a null pointer. Figure 7
illustrate the call_chain relation in Prolog.

/* list of id's presenting a call chain to event ID starting from Start */

call_chain(id(ID) , id(Start) , Out):-
 call_chain_helper(id(ID) , id(Start) , [] , Out).

/* There two base cases: first, when search go less than the lower bound */
/* Second base case occurs when encounter main method. */
/* One recursive case to search for the rest of the call chain */

call_chain_helper(id(ID) , id(Start), [Last|PathRest] , [Last|PathRest]):-
 ID =< Start, !.
call_chain_helper(id(MainID) , id(_) , Path, [MainID|Path]):-
 event(id(MainID) ,
 methodcall(_ , _ , _ , name('main'),
 arguments([value(instance('java.lang.String[]', _))]))).
call_chain_helper(id(ID) , id(Start) , PathSoFar , Path):-
 enclosing_method(id(ID) , id(Enclosing) , id(_)),
 call_chain_helper(id(Enclosing) , id(Start) ,[ID|PathSoFar] , Path).

Figure 7

4.2 Queries over the Execution History

Execution History Subset. In most cases the erroneous code
is contained in a small segment of the source code and the
erroneous behavior is contained in a small segment of the
execution history. Consider a program which has a call chain of,
say, 10 method calls leading to the execution of a certain event.
And the erroneous behavior is suspected to be in the last three
method calls of the call chain. A query over a domain of events
starting at the eighth call and ending in the 10th call is more
focused than a query over the entire call chain.

 7

Comparing Histories. Eisenstadt [6] describes the “Dump &
Diff” as a technique to locate errors. This technique works as
follows. The output of print statements is saved to two text files
corresponding to two different executions; the two files are then
compared using a source-compare “diff” utility, which
highlights the difference between the two outputs. This
technique can be adapted to query multiple execution histories
and to compare the results of multiple queries over the same
execution history. Comparative queries can be helpful to see the
difference between data structure contents, and call chains and
much more. Comparative queries are known to be helpful in
isolating errors related to software maintenance.

Call Tree. Grouping method calls according to a call tree is
motivated by the same reasons to group method calls according
to a call chain. However a call tree depicts a different kind of
interaction among objects. Method calls that are involved in a
call tree collaborate in achieving one task those method are not
necessarily dependant on each other. Each method can be
independent of the other methods unlike method calls in a call
chain which are dependent on each other, i.e. the called method
depends on the caller.

Gathering Data. Eisenstadt [6] in his study on how bug were
found in 51 cases gathered from professional programmers
found that in 27 cases, the bug was found by gathering data
regarding the execution of the program. Novice programmers
use the output print statement to gather data regarding some
variables at certain points in the program execution. Traditional
debuggers provide a watch on a field or a variable to allow the
programmer to see how a variable or a field changes; however,
it does not provide a full history of values assigned to that
variable or the watched field. An advantage of our technique
over the traditional debuggers is that the programmer is not
responsible for gathering the data, and neither is he responsible
for stepping over the program to observe the changes in the
value of a variable or a field. Our methodology recognizes the
importance of the data gathering phase in the debugging
process, and extends to gather data regarding the following
1. Member field value history
2. Local variable value history (understating loop execution)
3. History of arguments of method calls
4. History of return value of method calls
5. Contents of data structure.
6. History of contents of data structure.
7. All Class instances and their states (under standing user

defined data structures)
8. Thread status such: running and exited threads

Example 2: History of arguments to a tail recursive
factorial.

 Figure 8 shows an implementation of the factorial functions
using the accumulator passing style. Q1 in Figure 9 shows how
to pose the arguments_history query over the entire 34 events
recorded for that program. The query can be refined to be posed
on a specific domain of events rather than the entire history. In
the answer given A1, the id preceding the arguments is the event
id for that specific method call so the programmer can further
investigate the execution of any call.

public int factorial(int n, int accum)
{
 if(n == 0) return accum;
 else return factorial(n-1 , n * accum);
}

Figure 8

| ?- arguments_history(id(0) ,
 id(34) ,
 methodcall(_ , _ ,_ , name('factorial') , _) ,
 History).
History = [
 [id(7), arguments([value(5), value(1)])],
 [id(9), arguments([value(4), value(5)])],
 [id(11), arguments([value(3), value(20)])],
 [id(13), arguments([value(2), value(60)])],
 [id(15), arguments([value(1), value(120)])],
 [id(17), arguments([value(0), value(120)])]
]

Figure 9

Query about Statement Execution. One of the most
recurring questions in the debugging process is whether a
certain statement has been executed or not. Novice programmers
find the answer for such a question by inserting multiple print
statements in their code. Advanced developer would insert break
points using a traditional debugger to verify whether a given
statement has been executed or not. The answer to this question
is either yes or no. We propose the following seven queries:
1. Was a given conditional statement executed?
2. Was a given method called?
3. Was a member field assigned?
4. Is there an instance of a specific class?
5. Was a specific exception caught?
6. Is a given thread still running?
7. Has a given thread exited?

4.3 Query Management

Compose and Save Queries. The ability to compose queries
provides a way to adapt queries to recurring bug patterns as well
as to the individual needs of the developer. Also it allows
advanced user to add highly specialized queries. The idea is
similar to the idea behind the Emacs system that allows the user
to add macros dynamically to add functionally to the system.
Composed queries guarantee the flexibility and extendibility of
our framework. Allowing the user to add queries dynamically
results in a general purpose dynamic analysis tool since there is
no requirement on the contents of the macro besides it must be
valid Prolog code.
Save Queries Answers. Calculating a query on a program
history that has a million or more events is costly and time
demanding. In many debugging scenarios the programmer may
go back to examine the results of previous queries or would like
to compare them. Recomputing a query on such execution
history is wasteful; therefore, queries and their answers should
be saved so it is convenient for the programmer to examine the
previous results and perform comparisons.

 8

5. EVALUTATION

5.1 Errors in Object Oriented Programs
 Our studies started by building a database of incorrect Java
programs and the corrected programs. Programs used in our
research are gathered from [1][2] [5][26], the Java language
specification and some errors produced by the first author,
students and colleagues. The database is organized according to
the Knuth classification [20] modified to cover object oriented
and concurrent programming errors. Errors are classified into
eleven categories:

1
2
3
4
5

OO programming related: OO
Concurrent programming : C
Design anomalies: DA
Algorithmic anomalies: A
Blunders: B

6
7
8
9
10
11

Data disasters: D
Forgetfulness: F
Language lossage: L
Mismatches: M
Robustness: R
Typographic trivia: T

 The set of queries was used to debug 24 programs gathered
from different resources. Table 2 in appendix A gives detailed
explanation of each query. We have recorded the main queries
that were used to locate the source of the erroneous behavior in
each program. Table 1 shows these results. The second column
gives the category and subcategory of the erroneous program,
the third column lists queries used to isolate the bug. In some
case more than one query could have been used to debug the
program, in those cases we list queries separated by “or”
otherwise queries are separated by comma.
 Figure 10 show a graph where the 32 queries were plotted
versus the number of their usage in the experiment. We have
found that 11 queries were not used, 12 queries were used only
once, two queries were used exactly two times and seven
queries were used more than two times. The erroneous programs
used in this study do not capture all possible debugging
scenarios; therefore; in order to conclude the usefulness of the
unused 11 queries, the experiment need to be repeated on a
wider range of erroneous programs. Gathering such programs is
a difficult task since programmers rarely document the errors
they make. The following seven queries were used the most:
1. Q5: the enclosing environment for an exception.
2. Q6: object state
3. Q14: local variable history
4. Q16: call chain
5. Q20: history of arguments of method calls
6. Q26: whether a given conditional statement executed or

not.
7. Q27: whether a given method called or not

 To validate the usage of queries according to their
categories, results of the experiment are restructured according
to the category rather to individual queries. In another words,
queries are counted according to the category they belong to.
Figure 11 shows a graph the represents the number of times a
category was used. Eisenstadt [6] had found that data gathering
is the most predominant technique used in debugging. Our
results agree with Eisenstadt’s finding. The query management
category is not considered in this study due to the size and the
simplicity of the subject erroneous programs.

 Error Pattern Query
E1 C-The Orphaned Thread Q23, Q24
E2 OO-The Split Cleaner Q16, Q17, Q20
E3 OO-The Imposter Type Q26
E4 OO-The Broken Dispatch Q15, Q16
E5 OO-The Liar View Q13 or Q17 or Q27
E6 OO-The Double Descent Q5, Q6
E7 OO-The Null Flag Q5, Q16
E8 OO-The Dangling Composite Q9
E9 OO-The Run-On Initialization Q5, Q6, Q16, Q30
E10 OO-The Traveling Null Pointer Q5, Q10, Q11, Q16

E11 OO-Sibling objects blunder Q6, Q20
E12 OO-Language Lossage Q27
E13 A-Logic Q20 , Q7
E14 A-Off-By-One Q14
E15 B-Expression Q6, Q20
E16 B-Expression Q18, Q26, Q27
E17 B-Method Q20, Q21
E18 B-Var Q20
E19 B-Var Q14
E20 D-Index Q14
E21 D-Limit Q14, Q22
E22 F-Init Q6, Q29
E23 F-Location Q14, Q26
E24 F-Location Q18, Q27

Table 1

0 5 10 15 20

compare

call tree

environment

contracts

object state

call chain

basic events

gather data

C
at

eg
or

y

Times Used

Figure 11

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32

Queris

Ti
m

es
 U

se
d

Figure 10

 9

5.2 Case Studies
Case study 1: The Traveling Null Pointer
 The Traveling Null Pointer bug pattern can be described
as follows. A method call incorrectly returns a null pointer and
the client of that method propagates the null pointer through a
call chain, and finally a null pointer exception is thrown when
the client code of the last call in the chain tries to de-reference
the null pointer. In other words, the code that originates the null
pointer and the code that de-references that pointer are far apart
spatially and temporally. Figure 12 illustrate the Traveling null
pointer bug pattern with Java code. The instance method
“doSomeThing” in “FarAWayClass” returns a null pointer due
to erroneous conditions. When this program is executed it
reports a null pointer exception at line 14.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

public class TheTravelingNullPointer {
 public TheTravelingNullPointer() {
 m1();
 }
 public void m1(){
 FarAWayClass o = new FarAWayClass();
 String result = o.doSomeThing();
 m2(result);
 }
 public void m2(String result){
 mN(result);
 }
 public void mN(String result){
 if(result.equals("some result"))
 System.out.println("some result");
 else
 System.out.println("other result");
 }
 public static void main(String[] args) {
 new TheTravelingNullPointer();
 }
}
class FarAWayClass{
 public String doSomeThing(){
 // some code that result in returning a null
 return null;
 }
}

Figure 12

 Figure 13 shows the three queries used in debugging the
Traveling Null Pointer program and their answers. Q1 query
regarding the environment where the exception is throw. A1
indicates that the enclosing method is mN whose single
argument is null. The current question is where the null pointer
originated and the call to the enclosing method occurred at event
id 25. Q2 enquires full detail call chain starting from event id 0
up to event id 25. A2 shows that method m1 called method m2
that called method mN. This initial call to main and the
constructor is omitted for simplicity of presentation.

 By investigating the arguments passed to m2 it is clear that
it is also null. Method m2 is called from m1. Method m1 is call
at event id 8. When looking at the source code of method m1,
the programmer concludes that the local variable “result” holds
a null value since it is passed as the argument to m2. As this
point all figures point to the method o.doSomeThing as the error
source. To make sure that o.doSomeThing is returning null
pointer, Q3 asks regarding all methods that were called before

m2 in the same enclosing environment. A5 confirms that
o.doSomeThing has returned null pointer. Now the origin of the
null pointer has been located and isolated that is the beginning
of the fixing stage.

Q1

A1

where(exception(location('TheTravelingNullPointer.java', 14),
 _ , _ , _ , uncaught),
 Environment).

Environment =
event(id(25),
 methodcall(location('TheTravelingNullPointer.java',14),
 thread(main),
 instance('TheTravelingNullPointer',429),
 name(mN),
 arguments([value(null)])))

Q2

A2

full_detail_call_chain(id(25) , id(0) , EventListOut).

event(id(25),
 methodcall(location(‘TheTravelingNullPointer.java’,14),
 thread(‘main’),
 instance(‘TheTravelingNullPointer’,429),
 name(‘mN’),
 arguments([value(null)])))

event(id(23),
 methodcall(location(‘TheTravelingNullPointer.java’,11),
 thread(‘main’),
 instance(‘TheTravelingNullPointe’r,429),
 name(‘m2’),
 arguments([value(null)])))

event(id(8),
 methodcall(location(‘TheTravelingNullPointer’.java,6),
 thread(‘main’),
 instance(‘TheTravelingNullPointer’,429),
 name(‘m1’),
 arguments([])))

Q3
A3

pre_called_methods(id(23) , OutList).
[event(id(17),
 methodcall(location('TheTravelingNullPointer.java',26),
 thread(‘main’),
 instance('FarAWayClass',431),
 name(‘doSomeThing’),
 arguments([]))),
event(id(20),
 methodexit(location('TheTravelingNullPointer.java',26),
 thread(‘main’),
 instance('FarAWayClass',431),
 name(‘doSomeThing’),
 value(null))),]

Figure 13

Case study 2: The Double Descent
 The Double Descent bug pattern [1] is an example of
erroneous processing of composite data structure. The program
in Figure 14 builds a binary tree from random numbers and
check to see if two adjacent nodes have zeros. Tree is the super
class of Leaf and Node and has two abstract methods: insert and
hasAdjacentZeros which return true if the values stored in a
node and one of its right or left children are zeros, otherwise it
returns false. The for loop at lines 39-41 in the main method

 10

constructs a tree of 52 Node instances and one instance of Leaf.
The values of 50 instances are random numbers. Running the
program while commenting out line 42 may throw a class cast
exception. Running the program while line 42 is commented in
will increase the chance for the exception to be thrown.
 The class cast exception error message indicates that class
cast exception occurred while executing line 32 within the
hasAdjacentZeros method body. The double descent program
will succeed in some cases where two zeros are generated
among the random values. On the other hand the program will
fail when recursion reaches a child that is a Leaf instance. When
the search has to go all the way down the tree, the exception will
be thrown. Line 32 shows the code that result in throwing the
exception. It is clear that it only considers the children to be
instances of Node and it does not account for leaf instances.
 Query-based debugging can isolate this bug via 2 queries.
Figure 15 shows the queries and their answers. The important
answers are in bold and underlined. Q1 enquires about the
environment where the exception occurred. A1 gives details
about the enclosing method and the enclosing instance. The
enclosing instance is a Node object its unique id is 558, and the
enclosing method is hasAdjacentZeros that is defined in
DoubleDescent.java at line 31. Q2 is a query about the state of
Node object its unique id is 558 at event id 3246 that is the id of
the call to the enclosing method. Investigating the object state
shows that the right and left children are Leaf instances, and that
accounts for the class cast exception. The id filed preceding the
name in the instance filed is the id for the set-field event that
assigned this filed the corresponding value.

Q1

A1

| ?- where(exception(_ , _ ,
 instance('java.lang.ClassCastException' , _) ,
 _ ,
 uncaught) ,
 Environment).

Environment =
event(id(3246),
 methodcall(location('DoubleDescent.java',31),
 thread(main),
 instance('Node',558) ,
 name(hasAdjacentZeros) ,
 arguments([])))

Q2

A2

| ?- object_state(id(3246), instance('Node',558), State).

State =
 [
 instanceField(id(3210) ,
 name(right),
 value(instance('Leaf',485))),
 instanceField(id(3208),
 name(left) ,
 value(instance('Leaf',485))),
 instanceField(id(3206),
 name(value),
 value(0))
]

 Figure 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

abstract class Tree {
 public abstract boolean hasAdjacentZeros();
 public abstract void insert(int v);
}
class Leaf extends Tree {
 public static final Leaf ONLY = new Leaf();
 private Leaf(){ }
 public void insert(int v){
 throw new UnsupportedOperationException("Leaf.insert");
 }
 public boolean hasAdjacentZeros(){ return false; }
}
class Node extends Tree {
 public int value;
 public Tree left , right;
 public Node(int v){
 value = v;
 left = Leaf.ONLY ;
 right = Leaf.ONLY ;
 }
 public void insert(int v) {
 if (value < v){
 if (right instanceof Leaf) { right = new Node(v); }
 else { right.insert(v); }
 }else{
 if (left instanceof Leaf) { left = new Node(v); }
 else { left.insert(v); }
 }
 }
 public boolean hasAdjacentZeros(){
 return value == 0 &&
 (((Node) left).value == 0 || ((Node)right).value == 0)
 || left.hasAdjacentZeros() || right.hasAdjacentZeros();
 }
}
public class DoubleDescent {
 public static void main(String argv[]){
 Tree tree = new Node(500);
 for(int i = 0 ; i < 4 ; i++){
 tree.insert((int)(Math.random() * 1000000));
 }
 tree.insert(0);
 tree.hasAdjacentZeros();
 }
}

 Figure 14

 11

6. TOWARDS VISUAL QUERIES
 Our goal to make query-based debugging accessible to the
“average programmer” will not be fulfilled without defining an
easy-to-use interface that allows the user to pose higher level
declarative queries. This section gives the final picture of the
proposed declarative debugging method. Currently a project to
integrate JIVE and the JavaDD framework is under active
development at the University at Buffalo. JIVE design is based
on the following seven criteria for effective visualization of
object oriented programs [11]

1. Depict objects as environment of method execution.
2. Provide multiple views of the execution state.
3. Visualize history of execution and method interaction.
4. Support forwards and backwards execution of programs
5. Support queries on the runtime state.
6. Produce clear and legible drawings.
7. Uses exiting Java technologies.
 The JIVE system provides multiple views: the object states
at different levels of granularity, a sequence diagram to capture
the history of execution and source code viewer to show the
code being executed at the current point. In the remainder of this
section we will show two examples on how to use JIVE as an
interface to JavaDD. Screen shots presented in this section are
taken using JIVE and manually edited to illustrate the
declarative debugging technique.

The Double Descent Revisited. The bug in the Double
Descent program discussed in 5.2 can by found in two simple
steps. The user just highlights the exception in the program
output window and right clicks on the highlighted text, then
selects the desired query as shown the lower left corner of
Figure 16. The information obtained form the visual interface is
then translated to Prolog query by JavaDD. Query answer is
translated back to a visual answer by JIVE. The upper part of
the figure indicates that the exception has occurred in object
Node:558 which is surrounded by a circle. From the
visualization it is clear that Node:558’s children are all leafs.
The state of the Node 558 can be further inspected by right click
on the contour diagram of the node and select a query from the
list. The visual answer is given in the right left corner of the
figure. The sate of Node:558 just before the exception is thrown
is 0 as a value and the right and left children are leafs.

 Consider a smaller version of the Double Descent program
which builds a binary tree of 5 nodes that stores random
generated numbers. The programmer wishes to know the values
inserted in the tree. Figure 17 how such query can be posed
declaratively. The user first highlights the member field “value”,
then right clicks on the highlighted area and selects the field-
history query form the list. The visual query is translated to a
field history query on the entire history starting from event 0
and ending in event 136, also since the query is posed on the
source

 Object diagrams of the Double Descent program.

output console state of object Node:558

Figure 16

 State ?

 12

?- field_history(id(0) , id(136) ,
 instance('Node' , _),
 name('value'),
 HistoryList).

HistoryList = [
 instanceField(id(11), name(value), value(500))
 instanceField(id(37), name(value), value(458))
 instanceField(id(61), name(value), value(29))
 instanceField(id(85), name(value), value(544))
 instanceField(id(112), name(value), value(333))
]

Figure 17

code level the instance id is ignored so the query will be posed
on all class instances. The lower part of the figure shows how
the answer is translated to visual notation. The sequence
diagram shows not only the values of the member filed, but also
when this value was assigned. The horizontal axis list all objects
according to the order of their instantiation; therefore, the
environment where the assignments occurred can be inferred
from the sequence diagram.

7. CONCLUSIONS AND FUTURE WORK

 We believe that our proposed paradigm of declarative
debugging is a simple and effective method for debugging. As
noted earlier, we believe that both procedural and declarative
forms of debugging are useful. We presented many examples
to show when declarative debugging is effective in eliciting
information about object states and execution histories. Our
proposed query catalog is based upon an extensive study of
errors in object oriented programs. The visual interface for
queries in the JavaDD framework frees the programmer from
being burdened by using an unfamiliar textual query language,
and provides many features that facilitate the debugging
process. JavaDD can be easily interfaced from traditional
debugger and as well as other visualization tools.
 We have only sketched the visual interface for posing
queries, and our current work is devoted to a full exploration of
the visual interface. We are also applying our declarative
debugger to larger programs, in order to gain a better
understanding of the methodology and its potential limitations.
We are also exploring the performance characteristics of the
declarative debugger both in terms of the space and time needed
for various types of queries.
 An interesting dimension of future work is to explore the
coupling among queries. For example, if Qi and Qj are coupled,
then whenever Qi is used there is a good likelihood that Qj is
also used. The coupling suggests composing Qi and Qj into one
query. Another dimension to investigate is the relation between
a set of queries and a recurring bug pattern. If such relation
exists then combined with dynamic and static analysis there is a
possibility for an expert system that can help in isolating bug
patterns automatically.

 ACKNOWLEDGMENTS
The JavaDD framework builds upon the extensive capabilities
developed in the JIVE framework which was developed by Paul
Gestwicki at the University at Buffalo.

 13

8. REFERENCES
[1] Allen, E. Bug Patterns in Java. Apress, 2002.
[2] Bar, A. Find The Bug. Addison Wesley, 2005.
[3] Bederson, B. B., Grosjean, J., and Meyer, J. Toolkit Design

for Interactive Structured Graphics. IEEE Transactions on
Software Engineering, 30 (8), pages 535-546. 2004.

[4] Blackwell, et al. Cognitive Dimensions of Notations:
Design Tools for Cognitive Technology. In Proceedings of
the 4th International Conference on Cognitive Technology:
Instruments of Mind. Springer-Verlag, 2001.

[5] Bloch, J. Effective Java: Programming Language Guide.
Addison Wesley 2001.

[6] Eisenstadt, M. Tales of Debugging From The Front Lines.
Empirical Studies of Programmers V,1993.

[7] Fowler, et al. Refactoring improving the design of existing
code, Addison Wesley, 1999.

[8] Gamma, et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley 1995.

[9] Gestwicki, P.V.. Interactive Visualization of Object
Oriented Programs. Ph.D. Thesis, CSE Department,
University at Buffalo, NY, 2005.

[10] Gestwicki, P.V., and Jayaraman, B. Interactive
Visualization of Java Programs, Proc. IEEE Symposium on
Human-Centric Computing, Languages, and Environments,
pp. 226-235, Washington, DC, September 2002.

[11] Gestwicki, P.V. and Jayaraman, B. Methodology and
Architecture of JIVE. In Proceedings of ACM Symposium
on Software Visualization, pages 95-104, 2005.

[12] Girgis, et al. Visual Queries for Interactive Execution of
Java Programs. Technical Report 2004-19, CSE Dept.,
University at Buffalo, December 2004

[13] Girgis, H., Jayaraman, B., and Gestwicki, P.V. Visualizing
Errors in Object Oriented Programs. In OOPSLA 2005
Conf. Companion, pages 156 – 157, 2005.

[14] Goldsmith, Simon. O’Callahan, Robert. Aiken, Alex.
Relational Queries Over Program Traces. In Proceedings of
object oriented programming systems languages and
applications, pages 385-402, 2005.

[15] Hajiyev, et al. CodeQuest: Querying Source Code with
DataLog. In OOPSLA 2005 Conf. Companion, pages 102 –
103, 2005.

[16] Hendrix, T., et al. An Extensible Framework for Providing
Dynamic Data Structure Visualizations in a Light-weight
IDE. In Proceedings ACM SIGCSE Conference, 2004.

[17] Hovemeyer, D. and Pugh, W.. Finding Bug is Easy. ACM
SIGPLAN Notices: 39, 12: 92-106, 2004.

[18] JPDA:
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/index.html

[19] Jylog: http://sourceforge.net/projects/jylog/

[20] Knuth, D.E.. The Errors of TeX. Software—Practice &
Experience, 19(7): 607-685, 1989.

[21] Ko, A. and Myers, B.. Designing the Whyline: A
Debugging Interface for Asking Questions about Program
Behavior. In Proceedings of the ACM Conference on
Human factors in Computing Systems, pages 151-158,
2004.

[22] M. Kolling and J. Rosenberg. BlueJ: The Interactive Java
Environment, In Proceedings of ACM SIGCSE Conference,
New Orleans, LA, 1999

[23] Lencevicius R. Hölzle, U., and Singh, A. Query-based
debugging of object-oriented programs. In Proceedings of
ACM Conference on Object Oriented Programming
Systems Languages and Applications, pages 304-317,
1997.

[24] Lönnberg, J. et al. MVT: A Visual Testing for Software. In
Proceedings of AVI ’04: Automated Visual Interfaces, pp.
385 – 388, ACM Press.

[25] Martin, M., Livshits, B., and Lam, M. Finding Application
Errors and Security Flaws Using PQL: a Program Query
Language. In Proceedings of the ACM Conference on
Object Oriented Programming Systems Languages and
Applications, pages 365-383, 2005.

[26] Metzger, R.C. Debugging by Thinking: A Multidisciplinary
Approach. Elsevier Digital Press, 2004.

[27] Meyer, B. Object-oriented Software Construction, 2nd ed.
Prentice Hall, 1997.

[28] Meyer, B. Eiffel: The language. Prentice Hall. 1992.
[29] Meyers, Scott. Effective C++: 50 Specific Ways to Improve

Your Programs and Design. Addison Wesley 1997.
[30] Mitchell, R. McKim J. Design by Contract by Example.

Addison-Wesley 2002
[31] Pauw, W.D., Helm, R. Kimelman, D, and Vlissides, J.

Visualizing the behavior of object-oriented systems. In
proceedings of object oriented programming systems
languages and applications, pages 326-337, 1993.

[32] Perry, D. E. and Evangelist, W.M. An Empirical Study of
Software Interface Faults --- An Update. In Proceedings of
the Twentieth Annual Hawaii International Conference on
Systems Sciences, January 1987, Volume II, pages 113-126

[33] PrologBeans:
http://www.sics.se/sicstus/docs/latest/html/sicstus/PrologBe
ans.html#PrologBeans

[34] Rosenblum, D.. Towards a Method of Programming with
Assertions. In Proceedings of the 14th International
Conference on Software Engineering, pages 92 – 104, 1992

[35] Rutar, N., Almazan, C., and Foster, J. A Comparison of
Bug Finding Tools for Java. In Proceedings of the 15th
International Symposium on Software Reliability
Engineering, pages 245 – 256. 2004.

 14

A. APPENDIX

event(id(0) , threadstart(thread('Signal Dispatcher') , threadgroup('system'))).
event(id(1) , threadstart(thread('main') , threadgroup('main'))).
event(id(2) , memberfields(thread('main') , classname('DoubleDescent') , [])).
event(id(3) , methodcall(location('DoubleDescent.java' , 46) , thread('main') , classname('DoubleDescent') , name('main') , arguments([value(
 instance('java.lang.String[]' , 459))]))).
event(id(4) , datastructure(instance('java.lang.String[]' , 459) , contents([]))).
event(id(5) , memberfields(thread('main') , classname('Tree') , [])).
event(id(6) , memberfields(thread('main') , classname('Node') , [instacefield('value'), instacefield('left'), instacefield('right')])).
event(id(7) , methodcall(location('DoubleDescent.java' , 16) , thread('main') , instance('Node' , 474) , name('<init>') , arguments([value(500)]))).
event(id(8) , methodcall(location('DoubleDescent.java' , 1) , thread('main') , instance('Node' , 474) , name('<init>') , arguments([]))).
event(id(9) , methodexit(location('DoubleDescent.java' , 1) , thread('main') , instance('Node' , 474) , name('<init>') , 'void')).
event(id(10) , step(location('DoubleDescent.java' , 17) , thread('main') , [])).
event(id(11) , setfield(location('DoubleDescent.java' , 17) , thread('main') , instance('Node' , 474) , name('value') , value(500))).
event(id(12) , step(location('DoubleDescent.java' , 18) , thread('main') , [])).
event(id(13) , memberfields(thread('main') , classname('Leaf') , [classfield('ONLY')])).
event(id(14) , methodcall(location('DoubleDescent.java' , 6) , thread('main') , classname('Leaf') , name('<clinit>') , arguments([]))).
event(id(15) , methodcall(location('DoubleDescent.java' , 7) , thread('main') , instance('Leaf' , 476) , name('<init>') , arguments([]))).
event(id(16) , methodcall(location('DoubleDescent.java' , 1) , thread('main') , instance('Leaf' , 476) , name('<init>') , arguments([]))).
event(id(17) , methodexit(location('DoubleDescent.java' , 1) , thread('main') , instance('Leaf' , 476) , name('<init>') , 'void')).
event(id(18) , methodexit(location('DoubleDescent.java' , 7) , thread('main') , instance('Leaf' , 476) , name('<init>') , 'void')).
event(id(19) , setfield(location('DoubleDescent.java' , 6) , thread('main') , classname('Leaf') , name('ONLY') , value(instance('Leaf' , 476)))).
event(id(20) , methodexit(location('DoubleDescent.java' , 6) , thread('main') , classname('Leaf') , name('<clinit>') , 'void')).
event(id(21) , step(location('DoubleDescent.java' , 18) , thread('main') , [])).
event(id(22) , setfield(location('DoubleDescent.java' , 18) , thread('main') , instance('Node' , 474) , name('left') , value(instance('Leaf' , 476)))).
event(id(23) , step(location('DoubleDescent.java' , 19) , thread('main') , [])).
event(id(24) , setfield(location('DoubleDescent.java' , 19) , thread('main') , instance('Node' , 474) , name('right') , value(instance('Leaf' , 476)))).
event(id(25) , step(location('DoubleDescent.java' , 20) , thread('main') , [])).
event(id(26) , methodexit(location('DoubleDescent.java' , 20) , thread('main') , instance('Node' , 474) , name('<init>') , 'void')).
event(id(27) , step(location('DoubleDescent.java' , 46) , thread('main') , [])).
event(id(28) , step(location('DoubleDescent.java' , 47) , thread('main') , [localvariable(name('tree') , value(instance('Node' , 474)))])).
event(id(29) , methodcall(location('DoubleDescent.java' , 22) , thread('main') , instance('Node' , 474) , name('insert') , arguments([value(400)]))).
event(id(30) , step(location('DoubleDescent.java' , 30) , thread('main') , [])).
event(id(31) , step(location('DoubleDescent.java' , 31) , thread('main') , [])).
event(id(32) , methodcall(location('DoubleDescent.java' , 16) , thread('main') , instance('Node' , 477) , name('<init>') , arguments([value(400)]))).
event(id(33) , methodcall(location('DoubleDescent.java' , 1) , thread('main') , instance('Node' , 477) , name('<init>') , arguments([]))).
event(id(34) , methodexit(location('DoubleDescent.java' , 1) , thread('main') , instance('Node' , 477) , name('<init>') , 'void')).
event(id(35) , step(location('DoubleDescent.java' , 17) , thread('main') , [])).
event(id(36) , setfield(location('DoubleDescent.java' , 17) , thread('main') , instance('Node' , 477) , name('value') , value(400))).
event(id(37) , step(location('DoubleDescent.java' , 18) , thread('main') , [])).
event(id(38) , setfield(location('DoubleDescent.java' , 18) , thread('main') , instance('Node' , 477) , name('left') , value(instance('Leaf' , 476)))).
event(id(39) , step(location('DoubleDescent.java' , 19) , thread('main') , [])).
event(id(40) , setfield(location('DoubleDescent.java' , 19) , thread('main') , instance('Node' , 477) , name('right') , value(instance('Leaf' , 476)))).
event(id(41) , step(location('DoubleDescent.java' , 20) , thread('main') , [])).
event(id(42) , methodexit(location('DoubleDescent.java' , 20) , thread('main') , instance('Node' , 477) , name('<init>') , 'void')).
event(id(43) , step(location('DoubleDescent.java' , 31) , thread('main') , [])).
event(id(44) , setfield(location('DoubleDescent.java' , 31) , thread('main') , instance('Node' , 474) , name('left') , value(instance('Node' , 477)))).
event(id(45) , step(location('DoubleDescent.java' , 34) , thread('main') , [])).
event(id(46) , step(location('DoubleDescent.java' , 37) , thread('main') , [])).
event(id(47) , methodexit(location('DoubleDescent.java' , 37) , thread('main') , instance('Node' , 474) , name('insert') , 'void')).
event(id(48) , step(location('DoubleDescent.java' , 47) , thread('main') , [localvariable(name('tree') , value(instance('Node' , 474)))])).
event(id(49) , step(location('DoubleDescent.java' , 49) , thread('main') , [localvariable(name('tree') , value(instance('Node' , 474)))])).
event(id(50) , datastructure(instance('java.lang.String[]' , 459) , contents([]))).
event(id(51) , methodexit(location('DoubleDescent.java' , 49) , thread('main') , classname('DoubleDescent') , name('main') , 'void')).
event(id(52) , threaddeath(thread('main') , threadgroup('main'))).
event(id(53) , threadstart(thread('DestroyJavaVM') , threadgroup('main'))).
event(id(54) , threaddeath(thread('DestroyJavaVM') , threadgroup('main'))).

Figure 18: JEL Example for the Double Descent program.
The binary tree has two nodes which stores 500 and 400.

 15

Table 2

 Query Purpose Domain Range

Q1 Where a member field is set to a new
value?

Q2 Where a member field is accessed?
Q3 Where a member method is called?
Q4 Where an object is instantiated?

Q5 Where an exception is thrown or
caught?

To know the environment where the event
occurred

The Entire History
Class and a static method call
or an object and instance
method call

Q6 Object state To know member fields values

History between 2 event ids
specified by the user or
between the id of the object
instantiation event and id
specified by the user

Set of triplets of Field value ,
filed name and event id when
the field was set to a new
value

Q7 Contents of data structure. To know the values stored in an array or a
collection instance

List of pairs. Each pair has an
index and value.

Q8 Method arguments To know the arguments of a given method
call List of values

Q9 Value returned from a method call To know the returned value from a method
call

Specific event

Void or a value

Q10 Local variable value prior to the
execution of an event

To know the value of a local variable just
before the execution of an event

Local variable name and its
value

Q11 The pre-called methods
To group methods that were called before
the execution of an event within the same
environment

Execution history between a
specific event and the event
of the enclosing method call

A set of pairs. Each pair has a
method call event and a
method exit event

Q12 Local variable value after the
execution of an event

To know the value of a local variable just
after the execution of an event

Local variable name and its
value

Q13 The post-called methods
To group methods that were called after the
execution of an event within the same
environment

Execution history between a
specific event and the event
when the enclosing method
returns

A set of pairs. Each pair has a
method call event and a
method exit event

Q14 Local variable value history To understand loop execution

Execution history between the
event of a enclosing method
call and event when the
enclosing method exists.

A set of values

Q15 Compare
To know the difference between multiple
similar query answers such data structure
contents, call chain, and field history

Multiple similar query
answers Set of the elements that differ

Q16 Method call chain

To group method calls according to call
chain A set of method call events

Q17 Methods in a call tree To group method calls according to a call
tree

A set of pairs. Each pair has a
method call event and a
method exit event

Q18 Member field value history To know values assigned to a member filed
Set of pairs. Each pair has the
field value and event id where
the field was set to that value

Q19 History of contents of data structure. To know the contents of data structure at
different points

A set of sets of pairs. Each
pair has index and value

Q20 History of method arguments
Set of pairs. Each pair has the
event id and a list of
arguments

Q21 History of method return value

To group calls to the same method. Useful
in understanding recursive methods. Set of pairs. Each pair has the

event id and a value

Q22 Class instances and their states.
To investigate the state of a group of
instances of the same class. Useful in
inspecting a user defined data structure

Set of object state. Each object
state is a set of triplets of
member field name, value and
event id where the assignment
occurred

Q23 Running Treads To know the running threads
Q24 Exited Treads To know the exited threads
Q25 Suspended Threads To know the suspended threads

Set of pairs. Each pair has
thread name and thread group

Q26 Was a given conditional statement
executed?

Q27 Was a given method called?
Q28 Was a member field assigned?

Q29 Is there an instance of a specific
class?

Q30 Was a specific exception caught?
Q31 Is a given thread still running?
Q32 Has a given thread exited?

To know whether such event occurred or
not

History between 2 event ids
specified by the user

event Id where it occurred or
No other wise

