
An Appli
ation of Well-Orderly Trees in GraphDrawingHuaming Zhang and Xin He?Department of Computer S
ien
e and EngineeringSUNY at Bu�aloBu�alo, NY, 14260, USAAbstra
t. Well-orderly trees seem to have the potential of be
oming apowerful te
hnique 
apable of deriving new results in graph en
oding,graph enumeration and graph generation [3, 4℄. Our appli
ation of well-orderly trees in this paper provides new eviden
e to their power. Wegive more 
ompa
t visibility representation of plane graphs using theproperties of well orderly trees.1 Introdu
tionGraph drawing has emerged as an ex
iting and fast growing area of resear
h inthe 
omputer s
ien
e 
ommunity in re
ent years [1℄.Among various te
hniques fordrawing planar graphs, the 
anoni
al orderings and 
anoni
al ordering trees of3-
onne
ted plane graphs have served as a fundamental step upon whi
h drawingalgorithms are built [7{9, 12℄. The work by de Fraysseix, Pa
h and Polla
k [9℄ is
onsidered to be the �rst using the 
anoni
al orderings to produ
e straight-linedrawings with polynomial sizes for planar graphs. The te
hnique of 
anoni
alorderings has subsequently been applied to drawing graphs with respe
t to avariety of aestheti
 
onstraints, in
luding straight-line, 
onvexity, orthogonality,visibility representation, 2-visibility, 
oor-planning, and others.Later on, Chiang et. al. introdu
ed the 
on
ept of orderly spanning tree [6℄,whi
h generalizes 
anoni
al ordering tree and leads to several improvements invarious styles of graph drawings [6, 5, 16℄. In [3℄, Boni
hon, Gavoille and Hanusseintrodu
ed well-orderly trees, whi
h are 
anoni
al ordering trees with some spe-
ial properties. These spe
ial properties have been su

essfully used in graphen
oding, graph enumeration, and graph generation [3, 4℄. More importantly,well-orderly trees are 
losely related to the 
on
ept of S
hnyder's realizers [20,21℄, whi
h has also been widely used in graph drawing. We believe, well-orderlytrees will be a promising te
hnique of unifying known results as well as derivingnew results in various styles in graph drawings. In this paper, we are going toderive an appli
ation of well-orderly trees in graph drawing.A visibility representation (VR for short) of a plane graph G is a representa-tion, where the verti
es of G are represented by non-overlapping horizontal line? Resear
h supported in part by NSF Grant CCR-0309953.



segments (
alled vertex segment), and ea
h edge of G is represented by a verti
alline segment tou
hing the vertex segments of its end verti
es. The problem of
omputing a 
ompa
t VR is important not only in algorithmi
 graph theory,but also in pra
ti
al appli
ations su
h as VLSI layout. A simple linear time VRalgorithm was given in [19, 22℄ for a 2-
onne
ted plane graph G. It only usesan st-orientation of G and the 
orresponding st-orientation of its dual G� to
onstru
t a VR of G.One of the main 
on
erns afterwards for VR is the size of the representation,i.e., the height and width of VR. Some work has been done to redu
e the sizeof the VR by 
arefully 
hoosing a spe
ial st-orientation of G. We summarizerelated previous results in the following table:Referen
es Plane graph G 4-Conne
ted plane graph G[19, 22℄ Width of VR � (2n� 5) Height of VR � (n� 1)[13℄ Width of VR � b 3n�62 
[17℄ Width of VR � b 22n�4215 
[14℄ Width of VR � (n� 1)[25℄ Height of VR � b 5n6 
[24, 26℄ Width of VR � b 13n�249 
 Height of VR � d 3n4 eIn this paper, we prove that every plane graph G has a VR with height atmost 4n�15 , and it 
an be obtained in linear time.The present paper is organized as follows. Se
tion 2 introdu
es preliminaries.Se
tion 3 presents the 
onstru
tion of a VR with height bounded by 4n�15 .2 PreliminariesIn this se
tion, we give de�nitions and preliminary results. De�nitions not men-tioned here are standard.G is 
alled a dire
ted graph (digraph for short) if ea
h edge of G is assigned adire
tion. We abbreviate the words \
ounter
lo
kwise" and \
lo
kwise" as 

wand 
w respe
tively.An orientation of a graph G is a digraph obtained from G by assigning adire
tion to ea
h edge of G. We will use G to denote both the resulting digraphand the underlying undire
ted graph unless otherwise spe
i�ed. (Its meaningwill be 
lear from the 
ontext.) For a 2-
onne
ted plane graph G and an exterioredge (s; t), an orientation of G is 
alled an st-orientation if the resulting digraphis a
y
li
 with s as the only sour
e and t as the only sink. For more informationon st-orientation, we refer readers to [18℄.Let G be a 2-
onne
ted plane graph and (s; t) an exterior edge. An st-numbering of G is a one-to-one mapping � : V ! f1; 2; � � � ; ng, su
h that�(s) = 1, �(t) = n, and ea
h vertex v 6= s; t has two neighbors u;w with�(u) < �(v) < �(w), where u (w, resp.) is 
alled a smaller neighbor (bigger



neighbor, resp.) of v. Given an st-numbering � of G, we 
an orient G by dire
t-ing ea
h edge in E from its lower numbered end vertex to its higher numberedend vertex. The resulting orientation is 
alled the orientation derived from �whi
h, obviously, is an st-orientation of G. On the other hand, if G = (V;E)has an st-orientation O, we 
an de�ne an 1-1 mapping � : V ! f1; � � � ; ng bytopologi
al sort. It is easy to see that � is an st-numbering and the orientationderived from � is O. From now on, we will inter
hangeably use the term anst-numbering of G and the term an st-orientation of G, where ea
h edge of G isdire
ted a

ordingly.Lempel et. al. [15℄ showed that for every 2-
onne
ted plane graph G and anexterior edge (s; t), there exists an st-numbering. The following lemma was givenin [19, 22℄:Lemma 1. Let G be a 2-
onne
ted plane graph. Let O be an st-orientation ofG. A VR of G 
an be obtained from O in linear time. The height of the VR isthe length of the longest dire
ted path in O.Let T be a rooted spanning tree of a plane graph G. Two nodes are unrelatedif neither of them is an an
estor of the other in T . An edge of G is unrelated ifits endpoints are unrelated.Boni
hon et. al. introdu
ed well-orderly trees [3℄, a spe
ial 
ase of orderlyspanning trees de�ned by Chiang, Lin and Lu in [6℄, referred as simply orderlytrees afterwards. Let v1; v2; � � � ; vn be the 

w preordering of the nodes in T . Anode vi is orderly in T with respe
t to T if the in
ident edges of vi in T formthe following four blo
ks (possibly empty) in 

w order around vi:{ Bp(vi): the edge in
ident to the parent of vi;{ B<(vi): unrelated edges in
ident to nodes vj with j < i;{ BC(vi): edges in
ident to the 
hildren of vi; and{ B>(vi): unrelated edges in
ident to nodes vj with j > i.A node vi is well-orderly in G with respe
t to T if it is orderly, and if:{ the �rst 

w edge (vi; vj) 2 B>(vi), if it exists, veri�es that the parent of vjis an an
estor of vi.T is a well-orderly tree of G is all the nodes of T are well-orderly in G, andif the root of T belongs to the boundary of the exterior fa
e of G (similarly forsimply orderly tree). Note that an orderly tree (simply orderly or well-orderly)is ne
essarily a spanning tree.A plane triangulation is a plane graph where every fa
e is a triangle (in
ludingthe exterior fa
e). Let G be a plane triangulation of n verti
es with three exteriorverti
es v1; v2; vn in 

w order. A realizer R = fT1; T2; Tng of G is a partitionof its interior edges into three sets T1; T2; Tn of dire
ted edges su
h that thefollowing holds:{ for ea
h i 2 f1; 2; ng, the interior edges in
ident to vi are in Ti and dire
tedtoward vi.
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Fig. 1. Edge dire
tions around an interior vertex v.{ For ea
h interior vertex of G, v has exa
tly one edge leaving v in ea
h ofT1; T2; Tn. The 

w order of the edges in
ident to v is: leaving in T1, enteringin Tn, leaving in T2, entering in T1, and entering in T2 (See Fig. 1). Ea
hentering blo
k 
ould be empty.
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1 2Fig. 2. A plane triangulation G and the minimum realizer R0 of G.Normally, realizers of a plane triangulation G are not unique. Among all therealizer of G, there is an unique realizer R0 of G, where a

ording to the edgedire
tions in R0, there are no 

w-triangles. This realizer of G will be 
alled theminimum realizer of G. For example, in Fig. 2, the three trees of the realizer are



drawn in solid lines, dashed lines and dotted lines respe
tively. There are three
w 
y
li
 fa
es (marked by empty 
ir
les) but no 

w 
y
li
 triangles, so it is theminimum realizer of G.S
hnyder showed in [20℄ that ea
h set Ti of a realizer is a tree rooted atthe exterior vertex vi. For ea
h tree Ti of a realizer, we denote by �Ti the tree
omposed of Ti augmented with the two edges of the exterior fa
e in
ident tothe root of Ti, i.e. the vertex vi. For example, in Fig. 2, �Ti is Tn (the tree inthi
k solid lines) augmented with edges (vn; v1) and (vn; v2).We summarize related results in the following lemma [3, 6, 20, 21℄:Lemma 2. Let G be a plane triangulation of n verti
es with three exterior ver-ti
es v1; v2; vn in 

w order. Let R = fT1; T2; Tng be any realizer of G. Then,1. Ea
h �Ti, i 2 f1; 2; ng is a simply orderly tree. In addition, if R is the mini-mum realizer R0, then ea
h �Ti, i 2 f1; 2; ng is a well-orderly tree.2. Given the tree �T1 ( �T2, �Tn resp.), all the �rst 

w edge (u; vj) 2 B>(u) forea
h node u with respe
t to �T1 ( �T2, �Tn resp.) form the tree �Tn. ( �T1, �T2 resp.)3. The minimum realizer 
an be 
omputed in linear time.For example, in Fig. 2, �Tn is a well-orderly tree for G. And the �rst 

w edge(9; 12) in B>(9) for the node 9 is in �T2.Let v1; v2; � � � ; vn be the 

w preordering of the nodes of a tree T . The sub-sequen
e vi; � � � ; vj is a bran
h of T if it is a 
hain (i.e., vt is the parent of vt+1for every i � t < j), and if j � i is maximal. Bran
hes partition the nodes of T ,and ea
h bran
h 
ontains exa
tly one leaf.Boni
hon et. al. proved the following [3℄: The well-orderly tree �Tn of a min-imum realizer R0 = fT1; T2; Tng has the bran
h property: All nodes of a givenbran
h of �Tn must have the same parent in �T1 (ex
ept the root of �Tn). (Similarresults hold for �T1 and �T2.) For example, in Fig. 2, nodes 3; 4 form a bran
h,they have the same parent in �T1.3 More 
ompa
t VR of Plane GraphsLet T be a tree drawn in the plane. Let t1; t2; � � � ; tn be the 
w postorderingof the nodes of T . A node of T is a glue node of T if it is right before a leafnode in the ordering t1; t2; � � � ; tn. For example, 
onsidering �Tn in Fig. 2, nodes14; 12; 11; 9; 7; 5; 3 are the glue nodes. Note that, the set of the �rst node of allbran
hes of T ex
ept the root is the set of glue nodes. Also observe that thenumber of glue nodes of T is the number of leaves of T minus 1.Next, let's explore another property of a well-orderly tree of a plane triangu-lation.Lemma 3. Let R0 = fT1; T2; Tng be the minimum realizer of a plane triangula-tion G with n verti
es. Let �1; �2; �n be the number of internal nodes (i.e, non-leafnode) of �T1; �T2; �Tn, l1; l2; ln be the number of the leaves of �T1; �T2; �Tn respe
tively.Then,



1. The internal nodes of �T2 ( �Tn; �T1 resp.) must be the glue nodes of �Tn ( �T1; �T2resp.).2. ln � 1 � �2; l1 � 1 � �n; l2 � 1 � �1.Proof. A

ording to Lemma 2, ea
h �Ti is a well-orderly tree of G. We only provethe 
ase of �T2. The other two 
ases are similar.1. Let w be an internal node in �T2. Therefore, there is an edge (u;w) in �T2su
h that w is the parent of u in �T2. Applying Lemma 2 2, for the node uin �Tn, (u;w) is the �rst 

w edge in B>(u) with respe
t to �Tn. Sin
e �Tn isa well-orderly tree, the parent of w must be the an
estor of u in �Tn. So wmust be a glue node of �Tn.2. Applying to the observation that the number of glue nodes of T is the numberof leaves of T minus 1, we have ln � 1 � �2.For example, in Fig. 2, the internal nodes of �T2 are 14; 12; 9; 7; 5; 11. All ofthem are glue nodes of �Tn.Next we use the three well-orderly trees from the minimum realizer to obtainmore 
ompa
t VR of a plane triangulation G.Let R0 = fT1; T2; Tng be the minimum realizer of a plane triangulation Gwith n verti
es.
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 (b)Fig. 3. (a) There is no edge between ua and w1. (b) There is an edge between uaand w1, and there is no edge between ua and w0e. (Therefore, there is no edge be-tween u1 and w0e.) (ua; w1) 
ould be in �T1 or �T2. Then there must be edges betweenq1; � � � ; qb; qb+1; � � � ; qb+
 with ua and they must be in �T1.(
) There is an edge betweenua and w1, and there is an edge between ua and w0e. Therefore, there is no edge betweenqb and w1.Let's 
onstru
t an st-numbering of G using �Tn step by step. (The 
ases ofusing �T1; �T2 are similar.)Ea
h step begins from a leaf of �Tn. Suppose the leftmost unassigned leaf is u1,the se
ond leftmost unassigned leaf is q1. The rightmost unassigned leaf if w1, these
ond rightmost unassigned leaf if w01. The ordering of verti
es ofG by 

w pos-tordering, starting from u1 with respe
t to �Tn is u1; u2; � � � ; ua; q1; � � � ; qb. And



qb is the last vertex before the third leaf in this 

w postordering. The bran
hof �Tn 
ontaining q1 
ontains qb+
; � � � ; qb+1; qb; � � � ; q1 (whi
h will be needed later).The ordering of verti
es of G by 
w postordering, starting from w1 with re-spe
t to �Tn is w1; w2; � � � ; wd; w01; � � � ; w0e. And w0e is the last vertex before thethird leaf in this 
w postordering (Namely, the parent of w0e in �Tn has a 
hildon the left of w0e).See Fig. 3 for an illustration. Only part of the graph is drawn. Edges andpaths of �Tn are drawn in solid lines. Note that qb+1 must have a 
hild on theright of qb.Ea
h step is 
lassi�ed into one of the following three 
ases:Case 1: If there is no edge between ua and w1, then we �rst assign numbersto u1; u2; � � � ; ua by 

w postordering with respe
t to �Tn, then 
ontinue toassign numbers to w1; � � � ; wd by 
w postordering with respe
t to �Tn.Case 2: (ua; w1) is an edge in G, and there is no edge between ua and w0e.Note that q1 is a leaf in �Tn, and ua is the only vertex of G in B<(q1). Therefore(q1; ua) must be an edge of G and it is in T1. A

ording to the bran
h propertyfor �Tn, all the edges (ua; qi); i = 1; � � � ; b; (b+ 1); � � � ; (b+ 
) must also be in �T1.For the vertex qb+
, ua is the only vertex of G in B<(qb+
), and (qb+
; ua) is in �T1.Hen
e, qb+
 
annot be an internal node in the tree �T2. Also observe that qb+
 is aglue node of �Tn. In this 
ase, we �rst assign numbers to w1; � � � ; wd; w01; � � � ; w0e by
w postordering with respe
t to �Tn. Then we assign numbers to u1; u2; � � � ; uaby 

w postordering with respe
t to �Tn .Case 3: (ua; w1) is an edge in G, and (ua; w0e) is an edge in G. Similar toCase 2, all the edges (ua; qi); i = 1; � � � ; b; (b+ 1); � � � ; (b+ 
) must be in �T1. Forthe vertex qb+
, ua is the only vertex of G in B<(qb+
), and (qb+
; ua) is in �T1.Hen
e, qb+
 
annot be an internal node in the tree �T2. Also observe that qb+
 isa glue node of �Tn. Note that, all the edges (ua; w0i); i = 1; � � � ; e are also in �T1.Obviously, in this 
ase, there is no edge between qb and w1. Therefore, we �rstassign numbers to u1; � � � ; ua by 

w postordering with respe
t to �Tn, then
ontinue to q1; � � � ; qb by 

w postordering with respe
t to �Tn. Then we assignnumbers to w1; � � � ; wd by 
w postordering with respe
t to �Tn.Continue to next step if there are leaves left unassigned.Note: If there are only 1 or 2 leaves left in the end, then we assign the remain-ing numbers to them either using 

w postordering or using 
w postorderinguntil we �nish at the root of T . We do not 
ount this as a step. Note that, forea
h node, either it is assigned a number in a 
w postordering setting, or it isassigned a number in a 

w postordering setting.We have the following two key observations:Observation 1: For ea
h step, at most three leaves are assigned numbers.Observation 2: If Case 2 and Case 3 are applied kn times altogether, thenkn glue nodes (the nodes qb+
) of �Tn 
annot be internal nodes of �T2. Therefore,a

ording to Lemma 3 (1), ln � kn � 1 � �2.Lemma 4. Let G be a plane triangulation, R0 = fT1; T2; Tng be the minimumrealizer of G. Then, using �Ti; i = 1; 2; n,
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Fig. 4. An st-numbering of G in Fig. 2, obtained from �Tn by using our numberings
heme.1. The numbering of the verti
es of G 
onstru
ted by the above numberings
heme is an st-numbering of G.2. If Case 2 and Case 3 are applied ki times altogether for �Ti, then any dire
tedpath in the resulting st-orientation is at most n� li�ki2 .3. Any dire
ted path in the resulting st-orientation is at most n� li3 ; i = 1; 2; n.Proof. We only prove the 
ase i = n. The other two 
ases are similar.1. First observe that, for any node other than the root of �Tn, its parent isassigned a bigger number. And the root of �Tn is assigned n.For any internal node of �Tn, their 
hildren are assigned smaller numbers. Fora leaf u 6= v1; v2 of �Tn, either it is assigned a number in a 

w setting, thenthe non-empty blo
k B<(u) 
ontains its smaller neighbors; or it is assigneda number in a 
w setting, then the non-empty blo
k B>(u) 
ontains itssmaller neighbors. For v1; v2, one of them is assigned 1, and it be
omes asmaller neighbor for the other. Therefore, this numbering is an st-numberingfor G.2. Observe that, if Case 1 is applied to a step, then one of ua and w1 has to bebypassed by any dire
ted path, and they are assigned 
onse
utive numbersby our numbering s
heme. If Case 2 is applied to a step, then one of w0e andu1 must be bypassed by any dire
ted path, and they are assigned 
onse
utivenumbers by our numbering s
heme (This is be
ause, if ua = u1, then there isno edge between w0e and ua a

ording to our 
ondition in Case 2. If ua 6= u1,then it is not possible to have an edge (w0e; u1) be
ause G is a plane graph).If Case 3 is applied to a step, then one of qb and w1 must be bypassed by anydire
ted path, and they are assigned 
onse
utive numbers by our numbering



s
heme. Therefore, from the nodes assigned numbers within the same step,at least one node has to be bypassed by any dire
ted path.Suppose Case 2 and Case 3 are applied kn times altogether, then the totalnumber of steps is at least ln�3kn2 �1+kn. (The subtra
tion of 1 
omes fromthe last 1 or 2 leaves whi
h do not form a step.) Therefore, any dire
ted pathhas to bypass at least ln�3kn2 � 1 + kn verti
es. Therefore, its length is atmost n� ( ln�3kn2 � 1 + kn)� 1 =n� ln�kn2 .3. In the worst s
enario, ea
h step assigns numbers to three leaves, then wehave b ln3 
 steps. So any dire
ted path must bypass at least b ln3 
 verti
es, soit length is at most n� b ln3 
 � 1 � n� ln3 .For example, Fig. 4 shows an st-numbering of G, using our numbering s
hemeto �Tn. The �rst step numbers 1; 2; 3 by 
w postordering, then it numbers 4 by

w postordering. The se
ond step numbers 5 by 

w postordering, then itnumbers 6 by 
w postordering.Next we present our main theorem:Theorem 1. Let G be a plane triangulation with n verti
es, then there is a VRof G whose height is at most 4n�15 . And it 
an be 
onstru
ted in linear time.Proof. Let R0 = fT1; T2; Tng be the minimum realizer of G. Apply our st-numbering s
heme, suppose for �T1; �T2; �Tn, the number of their Case 2 and Case3 steps altogether are k1; k2; kn respe
tively. Then we have �2 � ln � kn � 1.Symmetri
ally, we have �1 � l2 � k2 � 1, and �n � l1 � k1 � 1. Summing themup and moving 3 to the left side, we have:�1 + �2 + �n + 3 � (l1 + l2 + ln)� (k1 + k2 + kn): (1)Pi
k a longest dire
ted path for ea
h st-orientation. By Lemma 4 (2), thesum of their lengths is at most:(n� ln � kn2 ) + (n� l2 � k22 ) + (n� l1 � k12 )= 3n� l1 + l2 + ln2 + k1 + k2 + kn2= 3n� (l1 + l2 + ln)� (k1 + k2 + kn)2� 3n� �1 + �2 + �n + 32 (2)The last inequality 
omes from Equation (1).By Lemma 4 (3), the sum of their length is at most:n� l13 + n� l23 + n� ln3= 3n� l1 + l2 + ln3 (3)



Multiply Equation (2) by 2 and multiply Equation (3) by 3. Adding themup, we have that 5 times the sum of the lengths of the three longest dire
tedpaths is at most: 6n� (�1 + �2 + �n + 3) + 9n� (l1 + l2 + ln)= 15n� (�1 + �2 + �n + l1 + l2 + ln)� 3= 15n� 3n� 3= 12n� 3: (4)Therefore, one of the longest dire
ted path from these three paths must beat most 12n�315 � 4n�15 . Applying Lemma 1, G admits a VR whose height is atmost 4n�15 , and it 
an be 
onstru
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