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Abstract. Well-orderly trees seem to have the potential of becoming a
powerful technique capable of deriving new results in graph encoding,
graph enumeration and graph generation [3,4]. Our application of well-
orderly trees in this paper provides new evidence to their power. We
give more compact visibility representation of plane graphs using the
properties of well orderly trees.

1 Introduction

Graph drawing has emerged as an exciting and fast growing area of research in
the computer science community in recent years [1]. Among various techniques for
drawing planar graphs, the canonical orderings and canonical ordering trees of
3-connected plane graphs have served as a fundamental step upon which drawing
algorithms are built [7-9, 12]. The work by de Fraysseix, Pach and Pollack [9] is
considered to be the first using the canonical orderings to produce straight-line
drawings with polynomial sizes for planar graphs. The technique of canonical
orderings has subsequently been applied to drawing graphs with respect to a
variety of aesthetic constraints, including straight-line, convexity, orthogonality,
visibility representation, 2-visibility, floor-planning, and others.

Later on, Chiang et. al. introduced the concept of orderly spanning tree [6],
which generalizes canonical ordering tree and leads to several improvements in
various styles of graph drawings [6, 5, 16]. In [3], Bonichon, Gavoille and Hanusse
introduced well-orderly trees, which are canonical ordering trees with some spe-
cial properties. These special properties have been successfully used in graph
encoding, graph enumeration, and graph generation [3,4]. More importantly,
well-orderly trees are closely related to the concept of Schnyder’s realizers [20,
21], which has also been widely used in graph drawing. We believe, well-orderly
trees will be a promising technique of unifying known results as well as deriving
new results in various styles in graph drawings. In this paper, we are going to
derive an application of well-orderly trees in graph drawing.

A wisibility representation (VR for short) of a plane graph G is a representa-
tion, where the vertices of G are represented by non-overlapping horizontal line
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segments (called vertex segment), and each edge of G is represented by a vertical
line segment touching the vertex segments of its end vertices. The problem of
computing a compact VR is important not only in algorithmic graph theory,
but also in practical applications such as VLSI layout. A simple linear time VR
algorithm was given in [19,22] for a 2-connected plane graph G. It only uses
an st-orientation of G and the corresponding st-orientation of its dual G* to
construct a VR of G.

One of the main concerns afterwards for VR is the size of the representation,
i.e., the height and width of VR. Some work has been done to reduce the size
of the VR by carefully choosing a special st-orientation of G. We summarize
related previous results in the following table:

References Plane graph G 4-Connected plane graph G
[19,22] Width of VR < (2n — 5)| Height of VR < (n —1)
13 Width of VR <[220

17 Width of VR < [Z2 %]

14 Width of VR < (n — 1)
25 Height of VR < [32]

24,26]  [Width of VR < [E2=21]]  Height of VR < [3]

In this paper, we prove that every plane graph G has a VR with height at
most 42=1 and it can be obtained in linear time.

5
The present paper is organized as follows. Section 2 introduces preliminaries.

Section 3 presents the construction of a VR with height bounded by ‘“LT’l.

2 Preliminaries

In this section, we give definitions and preliminary results. Definitions not men-
tioned here are standard.

G is called a directed graph (digraph for short) if each edge of G is assigned a
direction. We abbreviate the words “counterclockwise” and “clockwise” as ccw
and cw respectively.

An orientation of a graph G is a digraph obtained from G by assigning a
direction to each edge of G. We will use G to denote both the resulting digraph
and the underlying undirected graph unless otherwise specified. (Its meaning
will be clear from the context.) For a 2-connected plane graph G and an exterior
edge (s,t), an orientation of G is called an st-orientation if the resulting digraph
is acyclic with s as the only source and ¢ as the only sink. For more information
on st-orientation, we refer readers to [18].

Let G be a 2-connected plane graph and (s,t) an exterior edge. An st-
numbering of G is a one-to-one mapping ¢ : V — {1,2,---,n}, such that
&(s) = 1, &(t) = n, and each vertex v # s,t has two neighbors u,w with
E(u) < &(v) < &(w), where u (w, resp.) is called a smaller neighbor (bigger



neighbor, resp.) of v. Given an st-numbering & of G, we can orient G by direct-
ing each edge in E from its lower numbered end vertex to its higher numbered
end vertex. The resulting orientation is called the orientation derived from &
which, obviously, is an st-orientation of G. On the other hand, if G = (V, E)
has an st-orientation O, we can define an 1-1 mapping £ : V' — {1,---,n} by
topological sort. It is easy to see that £ is an st-numbering and the orientation
derived from ¢ is O. From now on, we will interchangeably use the term an
st-numbering of G and the term an st-orientation of G, where each edge of G is
directed accordingly.

Lempel et. al. [15] showed that for every 2-connected plane graph G and an
exterior edge (s,t), there exists an st-numbering. The following lemma was given
in [19,22]:

Lemma 1. Let G be a 2-connected plane graph. Let O be an st-orientation of
G. A VR of G can be obtained from O in linear time. The height of the VR is
the length of the longest directed path in O.

Let T be a rooted spanning tree of a plane graph G. Two nodes are unrelated
if neither of them is an ancestor of the other in 7. An edge of G is unrelated if
its endpoints are unrelated.

Bonichon et. al. introduced well-orderly trees [3], a special case of orderly
spanning trees defined by Chiang, Lin and Lu in [6], referred as simply orderly
trees afterwards. Let vy, vq,- -, v, be the ccw preordering of the nodes in T'. A
node v; is orderly in T with respect to T if the incident edges of v; in T form
the following four blocks (possibly empty) in ccw order around v;:

— B,(v;): the edge incident to the parent of v;;

— B<(v;): unrelated edges incident to nodes v; with j < i;
— B¢ (v;): edges incident to the children of v;; and

— B> (v;): unrelated edges incident to nodes v; with j > i.

A node v; is well-orderly in G with respect to T if it is orderly, and if:

— the first ccw edge (v;,v;) € Bs(v;), if it exists, verifies that the parent of v;
is an ancestor of v;.

T is a well-orderly tree of G is all the nodes of T' are well-orderly in GG, and
if the root of T' belongs to the boundary of the exterior face of G (similarly for
simply orderly tree). Note that an orderly tree (simply orderly or well-orderly)
is necessarily a spanning tree.

A plane triangulation is a plane graph where every face is a triangle (including
the exterior face). Let G be a plane triangulation of n vertices with three exterior
vertices vy, va, v, in ccw order. A realizer R = {T1,T»,T,} of G is a partition
of its interior edges into three sets 14,75, T, of directed edges such that the
following holds:

— for each i € {1,2,n}, the interior edges incident to v; are in T; and directed
toward v;.



Fig. 1. Edge directions around an interior vertex v.

— For each interior vertex of G, v has exactly one edge leaving v in each of
T1,T>,T,. The ccw order of the edges incident to v is: leaving in 77, entering
in T, leaving in T2, entering in 77, and entering in T (See Fig. 1). Each
entering block could be empty.

@

Fig. 2. A plane triangulation G and the minimum realizer Rq of G.

Normally, realizers of a plane triangulation G are not unique. Among all the
realizer of G, there is an unique realizer R of G, where according to the edge
directions in Ry, there are no ccw-triangles. This realizer of G will be called the
minimum realizer of G. For example, in Fig. 2, the three trees of the realizer are



drawn in solid lines, dashed lines and dotted lines respectively. There are three
cw cyclic faces (marked by empty circles) but no ccw cyclic triangles, so it is the
minimum realizer of G.

Schnyder showed in [20] that each set T; of a realizer is a tree rooted at
the exterior vertex v;. For each tree T; of a realizer, we denote by T the tree
composed of T; augmented with the two edges of the exterior face incident to
the root of Tj, i.e. the vertex v;. For example, in Fig. 2, T; is T, (the tree in
thick solid lines) augmented with edges (v,,v1) and (v, v2).

We summarize related results in the following lemma [3, 6, 20, 21]:

Lemma 2. Let G be a plane triangulation of n vertices with three exterior ver-
tices vy, Vs, v, in ccw order. Let R = {T1,T>,T,} be any realizer of G. Then,

1. Each T;, i € {1,2,n} is a simply orderly tree. In addition, if R is the mini-
mum realizer Ro, thfn efwh T;, i € {1,2,n} is a well-orderly tree.
2. Given the tree Ty (T, Ty resp.), all the first ccw edge (u,v;) € Bs(u) for

each node u with respect to Ty (T, T, resp.) form the tree T,,. (T}, Ty resp.)
3. The minimum realizer can be computed in linear time.

For example, in Fig. 2, T}, is a well-orderly tree for G. And the first ccw edge
(9,12) in B+ (9) for the node 9 is in Tb.

Let vy, vs,- -, v, be the ccw preordering of the nodes of a tree T'. The sub-
sequence vj,---,v; is a branch of T if it is a chain (i.e., v; is the parent of v;4q
for every i <t < j), and if j — 4 is maximal. Branches partition the nodes of T',
and each branch contains exactly one leaf.

Bonichon et. al. proved the following [3]: The well-orderly tree T}, of a min-
imum realizer Ro = {T1,T2,T,} has the branch property: All nodes of a given
branch of T,, must have the same parent in T} (except the root of T},). (Similar
results hold for 77 and 75.) For example, in Fig. 2, nodes 3,4 form a branch,
they have the same parent in 7.

3 More compact VR of Plane Graphs

Let T be a tree drawn in the plane. Let ¢1,ts,---,t, be the cw postordering
of the nodes of T. A node of T is a glue node of T if it is right before a leaf
node in the ordering ¢;,ts, -, t,. For example, considering 7}, in Fig. 2, nodes
14,12,11,9,7,5, 3 are the glue nodes. Note that, the set of the first node of all
branches of T' except the root is the set of glue nodes. Also observe that the
number of glue nodes of T' is the number of leaves of T" minus 1.

Next, let’s explore another property of a well-orderly tree of a plane triangu-
lation.

Lemma 3. Let Rg = {T1,T>,T,} be the minimum realizer of a plane triangula-
tion G with n vertices. Let §1,&2, &, be the number of internal nodes (i.e, non-leaf
node) of Ty, T2, Ty, l1,12,1,, be the number of the leaves of Ty, T», T,, respectively.
Then,



1. The internal nodes of Ty (T, T, resp.) must be the glue nodes of T, (Ty,Ts

resp.).
2. ln—=12>2&, 1—1>&, lb-1>¢&.

Proof. According to Lemma 2, each T; is a well-orderly tree of G. We only prove
the case of Ty. The other two cases are similar.

1. Let w be an internal node in 7. Therefore, there is an edge (u,w) in T
such that w is the parent of u in 7. Applying Lemma 2 2, for the node u
in T, (u,w) is the first ccw edge in B (u) with respect to T),. Since T, is
a well-orderly tree, the parent of w must be the ancestor of u in T},. So w
must be a glue node of T),.

2. Applying to the observation that the number of glue nodes of T' is the number
of leaves of T minus 1, we have [, — 1 > &.

For example, in Fig. 2, the internal nodes of T are 14,12,9,7,5,11. All of
them are glue nodes of T,.

Next we use the three well-orderly trees from the minimum realizer to obtain
more compact VR of a plane triangulation G.

Let Ro = {T1,T>,T,} be the minimum realizer of a plane triangulation G
with n vertices.

@ (b) ©

Fig. 3. (a) There is no edge between u, and wi. (b) There is an edge between u,
and w1, and there is no edge between u, and w,. (Therefore, there is no edge be-
tween u; and w..) (#a,w:1) could be in T} or Th. Then there must be edges between
@1, 5 Qby Qbt1, "+ Qore With u, and they must be in Ti.(c) There is an edge between
4, and w1, and there is an edge between u, and w’,. Therefore, there is no edge between
q» and wi.

Let’s construct an st-numbering of G using T}, step by step. (The cases of
using Ty, T are similar.)

Each step begins from a leaf of T),. Suppose the leftmost unassigned leaf is u;,
the second leftmost unassigned leaf is ¢; . The rightmost unassigned leaf if w , the
second rightmost unassigned leaf if w}. The ordering of vertices of G by ccw pos-
tordering, starting from u; with respect to T}, is uy, us, -+, Ua,q1," -, qy. And



qp is the last vertex before the third leaf in this ccw postordering. The branch

of T}, containing g; contains qy4¢,*+,qs+1,qs, -+, ¢1 (which will be needed later).
The ordering of vertices of G by cw postordering, starting from w; with re-
spect to T}, is wy,wa, -, wq,w}, -, ws. And w) is the last vertex before the

third leaf in this cw postordering (Namely, the parent of w’, in T}, has a child
on the left of w}).

See Fig. 3 for an illustration. Only part of the graph is drawn. Edges and
paths of T}, are drawn in solid lines. Note that g;y; must have a child on the
right of g;.

Each step is classified into one of the following three cases:

Case 1: If there is no edge between u, and w;, then we first assign numbers
to w1, us, -+, u, by ccw postordering with respect to 75, then continue to
assign numbers to wy,---,wq by cw postordering with respect to T},.

Case 2: (uq,w) is an edge in G, and there is no edge between u, and wy,.
Note that g; is a leaf in T},, and u, is the only vertex of G in B.(q;). Therefore
(g1, uq) must be an edge of G and it is in T;. According to the branch property
for T),, all the edges (uq,q;), i = 1,---,b,(b+1),--+,(b+ ¢) must also be in T7.
For the vertex gy, ., u, is the only vertex of G in B<(gpc), and (qpic, uq) isin 77 .
Hence, g3+, cannot be an internal node in the tree T5. Also observe that Qb+c 1S @
glue node of T},. In this case, we first assign numbers to wy, - - -, wg, w}, - -, w. by
cw postordering with respect to 7;,. Then we assign numbers to uy, us, - -, uqg
by ccw postordering with respect to T}, .

Case 3: (uq,w;) is an edge in G, and (u,,w!) is an edge in G. Similar to
Case 2, all the edges (uq,q;), i =1,---,b,(b+1),---,(b+ c) must be in T;. For
the vertex gpyc, u, is the only vertex of G in B<(gpie), and (gpye, uq) is in T7.
Hence, gp4. cannot be an internal node in the tree T5. Also observe that gy, is
a glue node of T},. Note that, all the edges (uq,w!), i =1,---, e are also in T}.
Obviously, in this case, there is no edge between ¢, and w;. Therefore, we first
assign numbers to u;,---,u, by ccw postordering with respect to T),, then
continue to q;,- -+, gy by ccw postordering with respect to T),. Then we assign
numbers to wy, - -+, wq by cw postordering with respect to T),.

Continue to next step if there are leaves left unassigned.

Note: If there are only 1 or 2 leaves left in the end, then we assign the remain-
ing numbers to them either using ccw postordering or using cw postordering
until we finish at the root of T. We do not count this as a step. Note that, for
each node, either it is assigned a number in a cw postordering setting, or it is
assigned a number in a ccw postordering setting.

We have the following two key observations:

Observation 1: For each step, at most three leaves are assigned numbers.

Observation 2: If Case 2 and Case 3 are applied k, times altogether, then
k, glue nodes (the nodes gy .) of T,, cannot be internal nodes of 7. Therefore,
according to Lemma 3 (1), I, — k, — 1 > &.

Lemma 4. Let G be a plane triangulation, Rog = {T1,T>,T,} be the minimum
realizer of G. Then, using T;, i =1,2,n,
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Fig. 4. An st-numbering of G in Fig. 2, obtained from T, by using our numbering
scheme.

3.

The numbering of the vertices of G constructed by the above numbering
scheme is an st-numbering of G.

If Case 2 and Case 3 are applied k; times altogether for T;, then any directed
path in the resulting st-orientation is at most n — %

Any directed path in the resulting st-orientation is at most n — %,z =1,2,n.

Proof. We only prove the case i = n. The other two cases are similar.

1.

First observe that, for any node other than the root of 7}, its parent is
assigned a bigger number. And the root of T}, is assigned n.

For any internal node of T},, their children are assigned smaller numbers. For
a leaf u # vy, vy of Ty, either it is assigned a number in a cew setting, then
the non-empty block B.(u) contains its smaller neighbors; or it is assigned
a number in a cw setting, then the non-empty block Bs (u) contains its
smaller neighbors. For vy, vs, one of them is assigned 1, and it becomes a
smaller neighbor for the other. Therefore, this numbering is an st-numbering
for G.

Observe that, if Case 1 is applied to a step, then one of u, and w; has to be
bypassed by any directed path, and they are assigned consecutive numbers
by our numbering scheme. If Case 2 is applied to a step, then one of w! and
u1 must be bypassed by any directed path, and they are assigned consecutive
numbers by our numbering scheme (This is because, if u, = w1, then there is
no edge between w!, and u, according to our condition in Case 2. If u, # uy,
then it is not possible to have an edge (w’,u;) because G is a plane graph).
If Case 3 is applied to a step, then one of ¢, and w; must be bypassed by any
directed path, and they are assigned consecutive numbers by our numbering



scheme. Therefore, from the nodes assigned numbers within the same step,
at least one node has to be bypassed by any directed path.
Suppose Case 2 and Case 3 are applied k,, times altogether, then the total
number of steps is at least % — 1+ k. (The subtraction of 1 comes from
the last 1 or 2 leaves which do not form a step.) Therefore, any directed path
has to bypass at least % — 1 + k,, vertices. Therefore, its length is at
most n — (=2ke — 14+ k,) -1 =n — bha

3. In thelworst scenario, each step assigns numbers to three l?aves, then we

have || steps. So any directed path must bypass at least || vertices, so

it length is at most n — L%"J —1<n- %"

For example, Fig. 4 shows an st-numbering of G, using our numbering scheme
to T},. The first step numbers 1,2, 3 by cw postordering, then it numbers 4 by
ccw postordering. The second step numbers 5 by ccw postordering, then it
numbers 6 by cw postordering.

Next we present our main theorem:

Theorem 1. Let G be a plane triangulation with n vertices, then there is a VR
of G whose height is at most 4”5—*1. And it can be constructed in linear time.

Proof. Let Rog = {T1,T>,T,} be the minimum realizer of G. Apply our st-
numbering scheme, suppose for T}, Ty, T},, the number of their Case 2 and Case
3 steps altogether are ki, ko, k,, respectively. Then we have & < [, — k, — 1.
Symmetrically, we have & < Iy — ko — 1, and &, < Iy — k1 — 1. Summing them
up and moving 3 to the left side, we have:

G+6E+E+3<(Lh+l+1,)— (ki + ke + ky). (1)

Pick a longest directed path for each st-orientation. By Lemma 4 (2), the
sum of their lengths is at most:

ln—kn lz—k2 ll_kl
(-t Bl DR,

l 2+1, k n
:3n_1+ + n 1+ ks +k

2 2
:3n_(l1+12+ln)—(k21+k22+k2n)
2

S3n_w 2)

The last inequality comes from Equation (1).
By Lemma 4 (3), the sum of their length is at most:

A Iy ln
n 3+n 3+n 3
_ll+l2+ln

= 8n— " (3)



Multiply Equation (2) by 2 and multiply Equation (3) by 3. Adding them
up, we have that 5 times the sum of the lengths of the three longest directed
paths is at most:

6n— (&1 +&E+En+3)+In— (I + 1+ 1,)
=1n— (&G +&E+én+lh+lb+1,)—3
=15n—-3n—-3
=12n — 3. (4)

Therefore, one of the longest directed path from these three paths must be

at most % < %. Applying Lemma 1, G admits a VR whose height is at
most 4"5_1, and it can be constructed in linear time.
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