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Abstract—Long range dependent (LRD) traffic whose sin-
gle server queue process is Weibull Bounded (WB) is first
analyzed. Two upper bounds on the individual session’s
queue length of LRD traffic under the generalized processor
sharing (GPS) scheduling discipline are then contributed. It
is shown that the index parameter in the upper bound of one
LRD flow, (in addition to the decay rate and the asymptotic
constant), may be affected by other LRD flows. A new con-
cept, called LRD isolation, is subsequently contributed and
accompanying it, a new technique is contributed to check
whether a flow, with a given GPS weight assignment, can
be guaranteed to be LRD isolated. This technique is also
amenable for use in an online call admission control (CAC)
scenario. When existing flows have already been assigned
contract weights that cannot be changed, our technique can
be used to determine minimum contract weights to be as-
signed to a new flow in order to guaranteed the flow to be
LRD isolated. The results are also extended to a PGPS
(Packet-based GPS) scheduler and relevant numerical re-
sults are provided to show the usefulness of our bounds and
LRD isolation technique.

I. Introduction

Scheduling disciplines used by switches or routers are
important to provide QoS (quality of service) support for
integrated applications comprising of voice, video and data
traffic. An ideal scheduling discipline should satisfy two re-
quirements: (a) Provide isolation between sessions (where
isolation means that the queuing process behaves no worse
than its Single Server Queue (SSQ) process with a com-
parable service rate). This guarantees that the schedul-
ing discipline is able to protect an individual flow1 against
misbehavior from other flows. (b) Realize statistical multi-
plexing gain. This suggests a flow can utilize excess service
rate allocated to others.

Perhaps the most widely studied non-FCFS scheduling
discipline is the Generalized Processor Sharing (GPS) dis-
cipline. GPS has two attractive characteristics: (1) each
backlogged session is guaranteed a minimum service rate.
This ensures that the misbehavior of other flows has a lim-
ited effect on an individual session, and provides the foun-
dation of isolation between sessions. Achieving isolation
further enables GPS to guarantee differentiated QoS for in-

Work supported by MOE Research Project R-263-000-078-112 and
Singaren Research Project R-263-000-202-305. A preliminary version
of this paper appeared in IEEE Globecom [1].

1which will be used interchangeably with the term “session”.

dividual sessions. (2) it is work-conserving, and any excess
service rate can be redistributed amongst backlogged flows.
The second characteristic enables GPS to obtain statisti-
cal multiplexing gain between input flows. Because of these
two characteristics, GPS is deemed an ideal scheduling dis-
cipline that can satisfy the two requirements (a) and (b)
mentioned above, and thus has attracted a lot of research
interests. When GPS is extended to packet switched net-
works, it is usually referred to as Weighted Fair Queuing
(WFQ) or Packet-based GPS (PGPS) [2].

Long range dependent (LRD) traffic is an increasingly
important class of traffic in modern day networks because
long range dependency is exhibited in Ethernet traffic [3],
WWW traffic [4], compressed video traffic [5,6], TCP traffic
[7] and so on. Since LRD traffic has burstiness extending
over various time scales, a Weibull bound rather than a
conventional exponential bound is usually associated with
LRD traffic’s SSQ process [8]. Achieving differentiated QoS
in a GPS queue remains a challenging task, especially for
LRD traffic. Prior analysis of GPS are often based on input
traffic streams which satisfy some well known burstiness
constraints that are either deterministic [9] or stochastic
[10, 11] in nature. In particular, the conventional stochas-
tic traffic, whose associated queue length distribution has
an exponential form, has been demonstrated to have an Ex-
ponential Bounded Burstiness (EBB) arrival process [12].
Based on such constraints on the arrival process, an upper
bound has been developed for the individual session queue
length in a GPS system [10, 11]. However, few analysis

of GPS based on LRD arrival processes have been carried

out. This paper contributes new insight into the behavior
of the GPS server when scheduling several LRD flows with
arrival process exhibiting what we call Weibull Bounded

Burstiness (WBB) constraints.

The relationship between LRD traffic and the Weibull
bound expression stems much from empirical studies
demonstrating that the queuing process of a work conser-
vative SSQ, whose input traffic exhibits LRD behavior, can
be commonly characterized by a Weibull Bounded (WB)
expression [13]. The work presented here is applicable to
LRD traffic that are WB in its SSQ process (although not
all LRD traffic can be WB in its SSQ process). Note that
the term “WB” refers to the queuing process while the term
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“WBB” we introduced earlier refers to the arrival process.
The relationship between a WBB arrival process and a WB
queuing process will be established in later sections.

In order to achieve QoS in a GPS system whose inputs
are LRD flows, issues related to isolation between LRD
flows in GPS systems need to be carefully characterized.
Recent research contributions by Borst [14–16] have shown
that under certain conditions, a LRD (or heavy tailed) traf-
fic flow can be well isolated from other input flows in a GPS
system [14,16] while in some other scenarios, it may inherit
burstiness from other flows [15]. However, good theoretical

bounds for an individual session queue length in the GPS

system remain to be found. More specifically, while Borst’s
work is valuable in providing a method to judge whether
an individual session can be isolated from other input ses-
sions under the GPS scheduling discipline, the problem of
how to guarantee the isolation of an individual session by
tuning GPS parameters, or how to determine the QoS per-
formance of an individual session that is not isolated from
other sessions remains unsolved.

In this paper, we derive two bounds for individual queu-
ing processes in a GPS system with LRD traffic inputs,
each with its own advantages and disadvantages (to be
spelt out in detail later). These bounds provide valuable
insights into the isolation between multiple GPS sessions.
More specifically, it is shown that the index parameter in
the upper bound of one LRD flow, (in addition to the de-
cay rate and the asymptotic constant), may be affected by
other LRD flows. In addition, we introduce a useful notion
called LRD isolation which differs from the usual notion
of flow isolation in that a flow is guaranteed to be LRD
isolated from other flows as long as its index parameter is
not affected by other flows. We also develop a necessary
and sufficient condition for a flow i being guaranteed to be
LRD isolated from other flows. Based on this condition, a
technique that can be used to quickly check if flow i can
be guaranteed to be LRD isolated from other flows with a
given (GPS service) weight assignment is proposed. When
some flows have already been assigned contract weights (ac-
cording to some Service Level Agreement or SLA) that can-
not be changed, the proposed technique can also be used to
determine the minimum contract weight to be assigned to
flow i in order for it to be guaranteed to be LRD isolated
from other flows, and thus is especially useful for on-line
call admission control (CAC). The results are also extended
to a PGPS (Packet-based GPS) scheduler so that numeri-
cal simulations can be presented to illustrate the usefulness
of the bounds and the proposed technique.

Our contributions are different from those presented in
[17, 18] which considered short range dependent models.
The work in [19] studied Stochastically Bounded (SB) SSQ
and Stochastically Bounded Burstiness (SBB) arrival pro-
cesses. One of the differences is that while SB and SBB
are discrete time processes, WB and WBB processes stud-
ied in this work are continuous time processes. In addition,
the WB and WBB bounds developed in this paper are spe-
cialized bounds compared to SB and SBB bounds as the
former two have an index parameter, while the latter two

do not. Accordingly, not only are the results contributed
in [19] not directly applicable, it is also nontrivial to derive
the WB and WBB bounds (as well as other results in this
paper).

Reference [20] did provide statistical bounds for queuing
delay in GPS systems for the LRD traffic scenario. How-
ever, its focus was on the admission region of GPS with
statistical resource sharing rather than the isolation be-
tween individual queuing processes. The bounds provided
were not derived from the queue length distribution but
were obtained via certain input/output traffic envelope ap-
proximation and a Gaussian distribution for each class of
traffic.

Another significant divergence from conventional LRD
traffic analysis which usually begins with associated queu-
ing process is that we begin our derivations from the arrival

process of LRD traffic. This brings more validity in all sub-
sequent queue analysis, since only when the arrival process
is bounded, the stability of the queuing process can be en-
sured.

The paper is organized as follows. In Section II, we re-
view fundamental knowledge related to conventional LRD
traffic analysis and the GPS discipline. In Section III, we
present the relationship between a WB SSQ and a WBB
arrival process, and then derive several upper bounds on
the aggregate WB SSQ processes. In Sections IV, the con-
cept of feasible ordering is reviewed, and the notion of LRD
isolation is introduced. Two upper bounds related to the
individual session queue length in a GPS system are also
derived. In Section V, a necessary and sufficient condition
to guarantee a flow i to be LRD isolated from other flows
is contributed, and a technique for determining a minimum
contract weight to be assigned to a flow i to ensure its LRD
isolation is also proposed and illustrated via numerical ex-
amples. Results in GPS are further extended to PGPS
system in Section VI, and in Section VII, we demonstrate,
via numerical simulation of a two-input PGPS system, the
usefulness of the two bounds. Section VIII concludes the
paper.

II. Preliminaries

In this section, we briefly review the fundamental knowl-
edge on the queue length distribution of LRD traffic and
the GPS scheduling discipline.

A. LRD Traffic and WB SSQ

LRD traffic is often characterized by heavy traffic bursts
that extend over a wide range of time scales [21, 22]. The
LRD traffic backlog, buffered within a SSQ, often possesses
a tail distribution that decays slower than that of tradi-
tional (e.g., Poisson) traffic. More specifically, the queue
length distribution of traditional traffic obeys a certain ex-
ponential form. For the case of LRD traffic, the Weibull
distribution is often used to characterize the slower decay-
ing SSQ distribution [5, 23, 24]. This relationship between
a WB SSQ distribution and LRD traffic is usually based
on empirical observations. The queue length distribution



3

which is Weibull Bounded (WB), has been defined as fol-
lows [25]:

Definition 2.1. A stochastic SSQ process, denoted
by WSSQ,γ(t), where γ is the service rate of the queue,
is WB(C, η, υ) with parameters C > 0 (which denotes
the asymptotic constant), η > 0 (which denotes the decay
rate), and 0 < υ ≤ 1 (which denotes the index parameter),
if it satisfies

Pr{WSSQ,γ(t) > w} < Ce−ηwυ

(1)

for all w ≥ 0 and all t ≥ 0.

Remark: The quantity Pr{W SSQ,γ(t) > w} represents
the probability that the backlog of the SSQ with service
rate γ will exceed a certain queue size w. In other words,
Pr{WSSQ,γ(t) > w} represents the queue length distribu-
tion of the SSQ. In addition, the decay rate η increases with
γ because when the service rate increases, the likelihood
that the queue length exceeding w will decrease. Also, the
index parameter υ can be further expressed in terms of the
Hurst parameter H (which is commonly used to charac-
terize the degree of long range dependence [5, 23, 24]), and
more specifically, υ = 2(1−H), where 0.5 ≤ H < 1. A traf-
fic process with H = 0.5 corresponds to conventional traffic
with a queue length distribution that decays exponentially.
A larger H, or a smaller υ, corresponds to heavier tailed
LRD traffic.

B. GPS Fundamentals

Generalized Processor Sharing (GPS) is a scheduling dis-
cipline defined under the assumption that sources are de-
scribed by fluid models [11]. Consider a GPS server with
rate γ serving N sessions. Let each session i be assigned
a weight parameter, which is a fixed real-valued positive
number φi. The set {φ1, φ2, ..., φN} thus represents the
GPS assignment. The N sessions share the server in the
following way [26]:

1. It is work conserving, i.e., as long as there are packets
backlogged in any of the GPS queues, the server is never
idle.

2. The excess service rate, if any, is redistributed among
the backlogged sessions in proportion to their weight pa-
rameters.

3. Let Sk(s, t) denote the amount of traffic served in the
time interval [s, t] for session k. If session i is backlogged
in the system during the entire interval [s, t], i.e., there is
always traffic queued for session i, then

Si(s, t)

Sj(s, t)
≥

φi

φj

, j = 1, 2, ..., N. (2)

¿From (2), it is clear that when session i is backlogged,
it is guaranteed a backlog clearing rate (or equivalently, a
guaranteed service rate) of at least

γi =
φi

∑N
j=1 φj

γ. (3)

III. Analysis of LRD Traffic

While analysis on LRD traffic usually starts with its SSQ
process, it is still important to formally characterize the
arrival process because, as mentioned previously, the sta-
bility of the SSQ process depends on whether the arrival
process is bounded. Stochastically Bounded (SB) SSQ and
Stochastically Bounded

A. Single WBB Arrival Process and Single WB SSQ

In this subsection, we establish the relationship between
a WB SSQ and a Weibull Bounded Burstiness (WBB) ar-
rival process. We begin with our definition of the burstiness
constraint qualifier to describe the arrival process of LRD
traffic as follows:

Definition 3.1. A traffic arrival process A(t) is WBB(
ρ, C, µ, υ) with parameters ρ, C, µ and υ, if it satisfies

Pr{

∫ t

s

A(u)du > ρ(t − s) + w} < Ce−µwυ

(4)

for all w ≥ 0 and all 0 ≤ s ≤ t. Similar to the notation in
Definition 2.1, C denotes the asymptotic constant, υ is the
index parameter. Here, µ is the decay rate2 and ρ is the
long term “upper rate” of the arrival process, which will
be further elaborated in Lemma 3.1.

Remark:
∫ t

s
A(u)du is the amount of arrival traffic accu-

mulated in time interval [s, t]. In addition, the decay rate
µ will increase with ρ, just as η will increase with γ in a
WB SSQ process (see Definition 2.1). However, there is a
subtle difference between ρ and the parameter γ. In the
former case, ρ is applied continuously from s to t while in
the later case, γ is only applied when the queue is not idle
in the interval [s, t].

Several lemmas and theorems, useful to the objectives of
this paper, are now presented.

Lemma 3.1. An arrival process A(t) that is WBB(ρ, C,
µ, υ) possesses the property that its parameter ρ is always
larger than or equal to its long term average rate

ρ ≥ lim
t−s→∞

E[
∫ t

s
A(u)du]

t − s
. (5)

The proof of Lemma 3.1, which intuitively explains why ρ
is called the “upper rate”, is in Appendix A.
Remark: The long term upper rate ρ is useful for the
purpose of bounding the entire ensemble of sample time
observations that constitute the stochastic arrival process
A(t). In particular, let An(t) be the nth sample observa-

tion of A(t) in [s, t], and let λn = limt−s→∞

∫

t

s
A(n,u)du

t−s
be

the corresponding average arrival rate for this sample. If
we were to repeat the observation of A(t) infinitely many
times using different start times, so that n approaches in-
finity, then we would have a corresponding list of average
arrival rates λ1, λ2, ..., λn→∞. This long term upper rate ρ
ranges between the lower limit E[λn] and the higher limit
ρmax = max[λ1, λ2, ..., λn→∞]. For a conservative (loose)

2Not to be confused with symbols η, which denotes the decay rate
of a WB SSQ process instead.
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WBB bound on A(t), one may set ρ to the higher limit
ρmax. However, notice that the long term upper rate,
defined in (4), is applied continuously even if the arrival
process is inactive. Therefore, a lower value of ρ where
ρmax ≥ ρ ≥ E[λn] may suffice to produce a tighter WBB
bound on A(t). In summary, the use of the long term up-
per rate ρ in (4) is essential for a general stochastic process
which may not be stationary (i.e., λ1 6= λ2 6= ... 6= λn→∞).
However, in practical arrival processes, stationary is an im-
plicit property for a flow that has some fixed arrival rate λ.
This means that if this flow is presented to the queue at dif-
ferent start times, the same average rate λ applies. Hence,
for the case of practical flows, λ1 = λ2 = ... = λn→∞ = λ
and therefore ρ = λ. Although many of our later deriva-
tions following this definition are still based on ρ, readers
should be aware that for practical considerations, ρ ought
to be replaced by λ since practical arrival processes are by
default implicitly stationary in property. In fact, in the
consideration of the GPS and PGPS discipline in Sections
IV, VI and VII, we consider λ instead of ρ. Finally, it is
also noted that besides ρ, the WBB expression in (4) also
contains other parameters like the decay rate µ, the index
υ and the asymptotic constant C. These parameters can
similarly be modified to obtain either loose or tight WBB
bounds.

In the following theorem, the relationship between a
WBB arrival process that we have defined, and a WB SSQ
process is established.

Theorem 3.1. Consider a work conserving SSQ that
transmits at rate γ. Suppose the queue is fed with a single
arrival process A(t), and let W SSQ,γ(t) be the amount of
workload stored in the queue at time t. Then:

(i)If WSSQ,γ(t) is WB, then A(t) is WBB, with long term
upper rate ρ = γ.

(ii)If A(t) is WBB with long term upper rate ρ = γ − ε
for some ε > 0, then W SSQ,γ(t) is WB.

Proof: For (i), since the workload W SSQ,γ(t) can be ex-
pressed as follows:

WSSQ,γ(t) = max
s<t

(

∫ t

s

A(u)du − γ(t − s)) (6)

where 0 ≤ s ≤ t, we have:

WSSQ,γ(t) ≥

∫ t

s

A(u)du − γ(t − s)

for all 0 ≤ s ≤ t, therefore,

Pr{

∫ t

s

A(u)du > γ(t − s) + w} ≤ Pr{W SSQ,γ(t) > w}

< Ce−ηwυ

Hence, A(t) is a WBB(γ, C, η, υ) process.
To prove (ii) we begin with the condition that A(t) is

WBB with long term upper rate ρ, i.e.

Pr{

∫ t

s

A(u)du > ρ(t − s) + w} < Ce−ηwυ

(7)

we prove by demonstrating that the SSQ process of any
given sample observation of A(t) is WB. Now, from basic
stochastic theory, we can apply the bound in (1) to a par-
ticular sample observation of A(t), say An(t), t ∈ [0, tn],
where 0 is the start time of the observation and tn is the
end time of observation. Note that the subscript n is not
only used to represent a particular time sample but also
the start time and end time of that sample observation.
Thus,

Pr{

∫ t

s

A(u)du > ρ(t − s) + w} < Ce−ηwυ

, 0 ≤ s ≤ t

⇒ Pr{

∫ tn

x

An(u)du > ρ(tn − x) + w} < Ce−ηwυ

,

0 ≤ x ≤ tn (8)

The relation in (8) only has a one way implication. How-
ever, if A(t) is an ergodic process, then a double implication
can be used in (8). It is also noted that the observation
time of the sample process An(t) ranges from 0 to tn. This
is a finite time range since by definition, an observation re-
quires a finite start time and a finite end time. Let W SSQ,γ

n

be the maximum queue size value arising out of the An(t)
arrival sample, such that

WSSQ,γ
n = max

x∈[0,tn]
(

∫ tn

x

An(u)du − γ(tn − x)) (9)

Since An(t) is a continuous time process between finite time
limits 0 and tn, there must exist a value x∗

n that maximizes
(9), so that we can proceed on to:

WSSQ,γ
n =

∫ tn

x∗

n

An(u)du − γ(tn − x∗
n) where 0 ≤ x∗

n ≤ tn

(10)
Therefore,

Pr{WSSQ,γ
n (t) > w}

= Pr{

∫ tn

x∗

n

An(u)du > γ(tn − x∗
n) + w}

= Pr{

∫ tn

x∗

n

An(u)du > ρ(tn − x∗
n) + ε(tn − x∗

n) + w}

< Ce−η[w+ε(tn−x∗

n)]υ

< Ce−2−1ηwυ

e−2−1ηευ [tn−x∗

n]υ (See (47) in Appendix)

(11)

It is noted that the above bound on Pr{W SSQ,γ
n (t) > w}

depends on the observed tn − 0 duration. If the duration
were to change, say for example, in the end time tn, this
will affect the value x∗

n and hence the bound will change
accordingly. However, a generic (but looser) bound that is
independent of the observed duration can be obtained as
follows:

Pr{WSSQ,γ
n (t) > w} < Ce−2−1ηwυ

e−2−1ηευ [tn−x∗

n]υ

< Ce−2−1ηwυ

(12)
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A closer look at the Weibull bounded expression Ce−2−1ηwυ

in (12) also shows an absence of dependency on the sample
index n. This means, that given any sample observation
An(t) of A(t) of any duration, the resulting SSQ process is
WB(C, η

2 , υ), or in other words, the SSQ process of A(t) is
WB(C, η

2 , υ) 2.
Remark: Although conventionally, LRD traffic is usually

described in terms of some WB SSQ process, it is still in-
sufficient to proceed on to GPS analysis since in GPS, we
are concerned with multiple arrival processes rather than
a single arrival process. If there is no burstiness constraint
on a single arrival process, there is not much that can be
deduced on the stability of a GPS server that is serving a
number of these arrival processes. With the introduction of
Theorem 3.1, we can now proceed further, since it is now
known that any LRD arrival process resulting in a WB
SSQ process must satisfy the WBB constraint with some
long term upper rate ρ. This means that for a GPS server
serving a number of LRD sources, as long as the sum of
the long term upper rates of these LRD sources does not
exceed the service capacity of the GPS server, the GPS
queue will be stable and further analysis can proceed.

B. Bounds on Aggregate WB SSQ

In this subsection, several bounds on the aggregate WB
SSQ process are derived. These bounds will be used fre-
quently in Section IV, VI and VII where GPS and PGPS
analysis are presented.

Lemma 3.2. Let W1(t) be WB(C1, η1, υ1) and W2(t)
be WB(C2, η2, υ2). The two processes can either be de-
pendent or independent. Then, W1(t)+W2(t) is WB(C1 +
C2 + C∗), η, υ) satisfying

Pr{W1(t) + W2(t) > w} < (C1 + C2 + C∗)e−ηwυ

(13)

where η = η1η2

η1+η2
, υ = min(υ1, υ2) and C∗ is a constant

obtained using the method in Appendix C.
The proof of Lemma 3.2 is in Appendix C.

Lemma 3.2 can be easily extended to multiple WB pro-
cesses as follows.

Theorem 3.2. Let Wi(t), 1 ≤ i ≤ N be N WB pro-
cesses with parameters (Ci, ηi, υi) respectively. These
processes can either be dependent or independent. Then,
W1(t)+W2(t)+...+WN (t) is WB((

∑N
i=1 Ci+C∗), η, υ) sat-

isfying

Pr{

N
∑

i=1

Wi(t) > w} < (

N
∑

i=1

Ci + C∗)e−ηwυ

(14)

where η = 1
∑

N

i=1

1
ηi

, υ = min(υ1, υ2, ..., υN ) and C∗ can

be obtained using the method Appendix C by applying
Lemma 3.2 step by step.
Remark: Given Lemma 3.2, the proof of Theorem 3.2 is
straight forward and hence omitted. For N WB queuing
processes with the same LRD degree (i.e. the same υ), Ap-
pendix C shows that υ = min(υ1, υ2, ..., υN ) is the tight-
est lower bound on the index parameter. But for N WB
queuing processes with different LRD degrees, it is a loose

bound because the index parameter of multiplexed LRD
flows is in general heavier tailed than the individual flows
due to multiplexing gain.

The following Lemma 3.3 and Theorem 3.3 present alter-
nate bounds to those bounds obtained in Lemma 3.2 and
Theorem 3.2 respectively. The alternate bounds are useful
since in certain cases they are tighter (see Fig. 4(b)). How-
ever, these alternate bounds are for large queue situations.
For this, we now present Lemma 3.3 and Theorem 3.3 as
follows.

Lemma 3.3. Let W1(t) and W2(t) be two independent
WB(C1, η1, υ1) and WB(C2, η2, υ2) respectively. If η2 ≤ η1

and υ2 ≤ υ1, then for ∀w > 2, W1(t) + W2(t) has an upper
bound of the form

Pr{W1(t) + W2(t) > w} < CWB
2 (w)e−ηwυ

(15)

where η = min{η1, η2} = η2, υ = min{υ1, υ2} = υ2 and

CWB
2 (w) = C2h(C1) + C1

where h(C1) = 1 + C1υη(eη − 1) + C1w
υη The proof of

Lemma 3.3. is in Appendix D.

Remark: From Appendix C, we know that η in Lemma
3.2 is η1η2

η1+η2
, which is always less than or equal to

min(η1, η2), which is the η in (15). Hence Lemma 3.3 yields
a larger (thus better) decay rate. In fact, if η2 ≈ η1, then
η in Lemma 3.3 is almost twice the value of η in Lemma
3.2. However, the asymptotic constant in Lemma 3.3 in-
creases with w, which is a trade off. For a heavy tailed
arrival process where υ → 0 so that for practical and fi-
nite values of w, wυ → 1 and thus CWB

2 (w) approaches a
constant, the penalty for using Lemma 3.3 is insignificant.
Conversely, if η2 differs significantly from η1 (i.e., η2 � η1),
then η → min(η1, η2), making Lemma 3.2 more attractive.

Table 1 summarizes the preferences (in terms of which
Lemma to use to obtain the bound) assuming that in all
the scenarios, the queue size of interest is larger than or
equal to 2.

Scenario Preference
η2 ≈ η1 & υ2 is small Lemma 3.3
η2 � η1 & υ2 is large Lemma 3.2

All other cases Either is ok

TABLE I

Preference for Lemma 3.3 or Lemma 3.2 in different

scenarios

Similarly to the way in which Lemma 3.2 is extended to
Theorem 3.2, we now extend Lemma 3.3 to the following
Theorem 3.3.

Theorem 3.3. Let Wi(t), 1 ≤ i ≤ N , be N inde-
pendent WB processes with parameters (Ci, ηi, υi) respec-
tively. If the queuing processes can be rearranged such that
the Nth queuing process has the property that ηN ≤ ηj

and υN ≤ υj for 1 ≤ j ≤ N − 1, then for ∀w > 2,
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W1(t)+W2(t)+...+WN (t) has an upper bound of the form

Pr{

N
∑

i=1

Wi(t) > w} < CWB
N (w)e−ηwυ

(16)

where η = min{η1, η2, ..., ηN} = ηN , υ = min{υ1, υ2, ..., υN} =
υN and

CWB
N (w) =

N
∑

j=1

[Cj

j−1
∏

l=1

h(Cl)] (17)

where h(Cl) = 1+Clυη(eη−1)+Clw
υη, and by convention,

∏j−1
l=1 h(Cl) = 1 when j = 1.

Proof: see Appendix D, particularly its last paragraph.

IV. Sample Path Behavior of LRD Traffic in a

GPS System

Recall from Theorem 3.1 that any LRD traffic input
whose queue length distribution is characterized by a WB
distribution has an arrival process that satisfies the WBB
constraint with some long term upper rate ρ. Hereafter, we
consider N stationary flows that maintain the same long
term average rate λi, i = 1, 2, ..., N irrespective of the start
time of the flow. As mentioned earlier (in the remark for
Lemma 3.1), the long term upper rate ρ reduces to the
more familiar λ.

A. Feasible Ordering and LRD Isolation of Flows

Let the arrival process for a stationary WBB LRD ses-
sion i be Ai(t) with long term average rate λi, such that
∑N

i=1 λi < γ. In order to characterize the effect of back-
logs from a set of sessions, we use the following definition
of the so-called feasible ordering of the sessions that will be
frequently referred to hereafter, according to their arrival
rates and (GPS service) weight parameters.

Definition 4.1. For a given set of input traffic flows
in a GPS server, whose long term average rate is λi, an
ordering is called a feasible ordering among the sessions
with respect to {λ1, λ2, ..., λN} and (GPS service) weight
parameters {φ1, φ2, ..., φN} [2] if and only if:

λi < ϕi(γ −

i−1
∑

j=1

λj) , 1 ≤ i ≤ N (18)

where ϕi = φi
∑

N

j=i
φj

, is a constant associated with weight

parameters. And by convention,
∑i−1

j=1 λj = 0 when i = 1.
We have the following result for feasible ordering, which

has been proved in [11]:
Lemma 4.1. For a given set of input traffic flows in

a GPS server with
∑N

i=1 λi < γ, there always exists one
or more than one feasible ordering that satisfies (18) after
being relabelled.

Remark: The right-hand side of (18) can be considered as
the service rate available to flow i. It is clear, by definition,
that those flows ordered earlier than flow i will affect the
service rate available to flow i. However, they will not affect
the index parameter of the queuing process of a heavier

tailed flow i as to be explained in subsection IV.C and
IV.D in more detail.

Note that the index parameter is what differentiates a
LRD flow from a SRD flow. Although the decay rate and
constant parameters also define the queuing process, how-
ever, these parameters form the exponential bound param-
eters commonly associated with an SRD flow. Hence their
presence, by definition, is for the purpose of describing the
SRD property of the flow. The index parameter, found
in the Weibull bound formula, was introduced to bound
flows exhibiting LRD behavior which cannot be suitably
bounded by just the constant parameter and the decay
rate. Hence, the LRD property of a flow, by definition,
is primarily due to its index parameter. Accordingly, we
introduce the following notion of “LRD isolation”.

Definition 4.2. We say that a flow, when multiplexed
with other flows in a queue system, is LRD isolated (from
other flows) in that queue system if and only if its resulting
queue process has the same or larger index parameter (i.e.
less heavy tailed) as the index parameter associated with its
SSQ process with equivalent service rate as that guaranteed
in the queue system.

This notion of “LRD isolation” is different from the con-
ventional understanding of flow isolation. In flow isolation,
the major concern is the flow’s service rate, and a flow is
said to be isolated from other flows if this flow is not ad-
versely affected by these flows [27]. Based on this, a LRD
flow is flow isolated if and only if its queue process is not
adversely affected after it is multiplexed and served with
other flows in the GPS server.

It can be shown that flow isolation is guaranteed for a
flow in a GPS server if the flow can be ordered first in a
feasible ordering. The reason is under this case, the flow is
always guaranteed a service rate greater than its long term
average rate based on (18), which is not affected by other
flows. In addition, Lemma 4.2, which will be presented
later, also shows that the flow’s queue process in the GPS
system is not adversely affected (with respect to its SSQ
process) by other flows. However, if the flow cannot be
ordered first in any of the feasible ordering, the guaranteed
service rate to the flow may depend on the arrival rates of
some other flows. In other words, it may vary over time
and hence the queue process of the flow in the GPS system
could be affected adversely.3 As a result, if a flow cannot
be ordered first in any of the feasible ordering, the flow
may or may not be guaranteed to be flow isolated from
other flows. However, a flow can still be guaranteed to
be LRD isolated (from heavier tailed flows) even if some
lighter tailed flows have to be ordered before this flow in all

feasible orderings, as to be discussed later in this section.
Clearly, flow isolation implies LRD isolation but not vice
versa. Since the index parameter is the most important
measure of the LRD property (heaviness or lightness of the
tail) of a flow, the notion of LRD isolation as defined above
is useful when studying LRD flows.

3Note that, when λi = φiγ, flow i cannot be ordered first according
to (18) although it is flow isolated.
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B. GPS Decomposition

Now let Ai denote a sample path (or a single realization)

of the random arrival process Ai(t), and QGPS,γ
i denote

the corresponding sample path of the GPS queue backlog
due to the sample arrival process Ai. To obtain relevant
bounds on QGPS,γ

i , we use a method similar to that in [11]
to decompose the GPS system into N fictitious WB single
server queues (SSQs), denoted by δSSQ,γi

i (t), with individ-

ual rates γ1, γ2, ..., γN , where γi > λi,
∑N

i=1 γi ≤ γ, and

γi ≤ ϕi(γ −
∑i−1

j=1 γj). Now, the reason for considering the
N fictitious WB SSQs is that their bounds are easier to
obtain and would surely bound QGPS,γ

i as well. This is
because the N fictitious WB SSQs do not consider multi-
plexing gain while the QGPS,γ

i queue process does.
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Fig. 1. Decompose a GPS system into N fictitious SSQs

Without loss of generality, let 1,2,...,N be a feasible or-
dering of the fictitious processes with respect to γi’s. From
Lemma 3 of [11], the following Lemma 4.2 can be derived:

Lemma 4.2. For any t,

QGPS,γ
i (t) ≤ ϕi

i−1
∑

j=1

δ
SSQ,γj

j (t) + δSSQ,γi

i (t) (19)

where each δSSQ,γi

i SSQ process is independent.
Remark: Lemma 4.2 provides an upper bound on the queue
length QGPS,γ

i (t) of an individual session in the GPS sys-

tem in terms of the queue length δSSQ,γ
i (t) in the fictitious

system. It is clear from Lemma 4.2 that to bound the dis-
tribution of QGPS,γ

i (t), it suffices to bound the following
aggregate of fictitious queue length processes:

ϕiδ
SSQ,γ1

1 (t)+ϕiδ
SSQ,γ2

2 (t)+...+ϕiδ
SSQ,γi−1

i−1 (t)+δSSQ,γi

i (t)
(20)

In what follows, we will provide two bounds on (20), i.e.,
the right hand side of (19).

C. A General Bound on Individual Session Queue Length

For N individual LRD flows sharing a GPS server on
the condition of queue stability, i.e.,

∑N
i=1 λi < γ, and

under the assumption that 1,2,...N is a feasible ordering
with respect to φi and λi, λi < γi for i = 1, 2, ..., N , we

present a GPS bound in the following Theorem 4.1 that is
based on Theorem 3.2.

Theorem 4.1. Each individual queue length distribu-
tion in the GPS system has an upper bound as follows:

Pr{QGPS,γ
i (t) > q} < CGPS

i e−ηGP S
i q

υGP S
i (21)

where

υGPS
i = min

1≤j≤i
{υj} , (22)

ηGPS
i =

1
∑i

j=1
1
η̄j

, (23)

CGPS
i = (

i
∑

j=1

Cj + C∗)e−ηGP S
i (24)

Note that, in the above,

η̄j = {

ηj

ϕ
υj

i

1 ≤ j < i

ηi j = i

and C∗ can be obtained similarly as in Theorem 3.2.

Proof: First, because all the input flows are LRD flows,
we have

Pr{δSSQ,γ
j (t) > q} < Cje

−ηjq
υj

, j = 1, 2, ..., N. (25)

Secondly, let

δ
SSQ,γj

j,eqv (t) = ϕiδ
SSQ,γj

j (t) , j < i (26)

we have

Pr{δ
SSQ,γj

j,eqv (t) > q} = Pr{δ
SSQ,γj

j (t) >
q

ϕi

} < Cje
−η̄jq

υj

(27)
for 1 ≤ j < i, where η̄j =

ηj

ϕ
υj

i

.

Finally, since (20) can now be written as

δSSQ,γ1

1,eqv (t)+δSSQ,γ2

2,eqv (t)+...+δ
SSQ,γi−1

i−1,eqv (t)+δSSQ,γi

i (t) (28)

by combining (25), (27) and Lemma 4.2, one can easily
verify the result in (21) based on Theorem 3.2. 2

Remark: Theorem 4.1 gives a general upper bound on
queue length distribution in a GPS system. It is important
to note that the GPS upper bound on flow i is not affected
by the flows that are ordered after flow i (because they do
not factor in the upper bound expression for flow i). It is
affected only by flows 1 to i − 1, but the impact on the
bound is negligible as long as flow i is heavier tailed (i.e.,
has a smaller index parameter υi) than any of the flows 1
through i − 1. In fact, the index parameter in the bound
for flow i is not affected at all as long as flows 1 to i − 1
are lighter tailed than flow i.
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D. An Alternate Upper Bound

In the following Theorem 4.2, an alternate upper bound
on individual session queue length in GPS with LRD traffic
is provided based on Theorem 3.3. Such a bound may be
better than the bound previously given in Theorem 4.1 but
can only be applied under the condition that for any given
i, there exists a 1 ≤ k ≤ i such that both η̄k and υk are
minimal, in addition to the conditions stated for Theorem
4.1.

Theorem 4.2. If there exists a k, 1 ≤ k ≤ i, such
that η̄k = min1≤j≤i{η̄j} and υk = min1≤j≤i{υj}, then for
∀q > 2, the upper bound for individual session queue length
is:

Pr{QGPS,γ
i (t) > q} < CGPS

i (q)eηGP S
i q

υGP S
i (29)

where

υGPS
i = min

1≤j≤i
(υj) = υk , (30)

ηGPS
i = min

1≤j≤i
(η̄j) = η̄k , (31)

CGPS
i (q) = Ck

i
∏

l=1,l 6=k

hGPS
i (Cl) +

i
∑

j=1,j 6=k

[Cj

j−1
∏

l=1,l 6=k

hGPS
i (Cl)]

(32)

where hGPS
i (Cl) = 1 + Clυ

GPS
i ηGPS

i (eηGP S
i − 1) +

Clw
υGP S

i ηGPS
i , and by convention,

∏j−1
l=1,l 6=k hGPS

i (Cl) = 1
when j = 1.
Proof: Without loss of generality, assume that k < i. The
aggregate process in (28) can be re-written such that the
kth process with the minimum decay rate as well as with
the minimum index parameter appears last in the sequence
as follows:

δSSQ,γ1

1,eqv (t) + δSSQ,γ2

2,eqv (t) + ... + δ
SSQ,γk−1

k−1,eqv (t)

+δ
SSQ,γk+1

k+1,eqv (t) + ... + δSSQ,γi

i (t) + δSSQ,γk

k,eqv (t) (33)

Hence, by applying Theorem 3.3, Theorem 4.2 can be eas-
ily verified. 2

Remark: Theorem 4.2 provides an upper bound on an ac-
tual session i’s backlog QGPS,γ

i (t) in the GPS system when
there exists a very heavy tailed LRD flow with the small-
est index parameter (as well as the smallest decay rate).
One implication of Theorem 4.2, similar to Theorem 4.1,
is that it is desirable to order the flows that are heavier
tailed as close to the end of a feasible ordering as possible,
again since the index parameter in the upper bound for the
individual queue length of flow i will not be affected if and
only if the flows 1 through i − 1 are all lighter-tailed than
flow i.

V. A Technique to Check and Ensure LRD

Isolation

Recall from Lemma 4.1 that in a stable GPS system
where

∑N
j=1 λj < γ, there exists at least one feasible or-

derings for a given weight assignment. Before we discuss
LRD isolation, it is useful to revisit the concept of flow
isolation with the following Lemma 5.1.

Lemma 5.1: In a stable GPS system, if flow i satisfies
the following condition:

λi < γ
φi

∑N
j=1 φj

(34)

then the flow is flow isolated.
Proof: The proof to Lemma 5.1 is straight-forward since

the right hand side of (34) is the minimum guaranteed rate,
however, we still provide the required proof for Lemma 5.1
since several intermediate results of this proof will be used
later to prove newer results pertaining to LRD isolation.

Relabel flow i as flow 1, and all other N − 1 flows to
be flows 2 to N . Note that flow 1 now satisfies (18), and
hence all we need to show is that the remaining N − 1
flows can be feasibly ordered after flow 1. To this end,
consider a new GPS system with service rate γ ′ = γ − λ1.
Since γ′ >

∑N
j=2 λj , the new GPS system is also stable,

and hence, there always exists a feasible ordering such that
(after relabelling the flows 2 to N , we have for any flow
2 ≤ i ≤ N :

λi <
φi

∑N
j=i φj

(γ′ −
i−1
∑

j=2

λj)

=
φi

∑N
j=i φj

(γ −

i−1
∑

j=1

λj).2 (35)

Note that the above becomes the same as (18), which
means that if flow 1 is ordered first, the remaining N − 1
flows can also be ordered to yield a feasible ordering.
Therefore, flow 1 is flow isolated.

Remark: It should be noted that (34) is only a sufficient
condition for flow isolation, not a necessary condition. In
fact, it is a sufficient condition to guarantee a flow to be
flow isolated. However, as mentioned earlier, a flow can
still be isolated even if it cannot be “guaranteed” to be
flow isolated, or even if it does not satisfy (34).

Based on Lemma 5.1, an obvious method to guarantee
the flow isolation of every flow is to assign weight of every
flow according to (34) such that every flow i can be ordered
in the first place in a feasible ordering. As mentioned ear-
lier, being able to order a flow first in any feasible ordering
is the most applicable condition to guarantee a flow to be
flow isolated for CAC purposes. That, however, is not nec-
essary to guarantee just LRD isolation of a flow, which is
less strict than flow isolation, as to be discussed in a later
subsection.

A. Limitations of Existing Methods

In this subsection, we discuss the shortcomings of the
existing methods for assigning weights to achieve flow iso-
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lation and testing whether a flow can be flow isolated for a
given weight assignment.

A GPS system may support the following three types
(classes) of flows (services): A Type 1 flow requires a higher
QoS than that provided by flow isolation, so it requires a
contract weight that is much larger than λi

γ

∑N
j=1 φj ; A

Type 2 flow requires flow isolation, and thus needs a con-
tract weight that is a little larger than λi

γ

∑N
j=1 φj ; A Type

3 flow only requires LRD isolation (but not flow isolation),

and thus can have a contract weight less than λi

γ

∑N
j=1 φj .

Note that the contract weight cannot be changed as long
as the service level agreement (SLA) is in effect. On the
other hand, a (lightly loaded) GPS system may assign a
flow an extra weight (if available) to provide the flow with
better service, and such extra weight can be adjusted (e.g.,
transferred to other flows) by the GPS system.

The method of assigning weights based on (34) has a lim-
ited applicability in supporting both Types 1 and 2 but is
not applicable to Type 3 flows. From users or applications’
viewpoint, having Type 3 flows is useful because certain
applications may require less strict performance guaran-
tee than that given by flow isolation, and such flows can
be admitted into a GPS system and with less costs to the
users or aplications. In addition, from the GPS system’s
viewpoint, supporting Type 3 flows allows it to admit more
flows than otherwise possible, thus increasing its utilization
and potential revenues.

For example, (hereafter referred to as Example 1), con-
sider a GPS system with γ = 16 and five flows numbered
1 through 5 in the descending order of their index parame-
ters, whose λi = i where 1 ≤ i ≤ 5. Assume that the total
weight is

∑5
j=1 φj = 16, and in addition flows 1 and 2 have

been assigned contract weights of φ1 = 1.1 and φ2 = 4,
respectively. Since the remaining weight for flows 3, 4 and
5 is 10.9 but the sum of their arrival rates is 12, it is clear
that the (34) cannot be used to assign the weights to all
the three remaining flows to guarantee their flow isolation.

In general, due to the existence of Type 1 flows (e.g., flow
2 in Example 1), flow isolation may not always be achiev-
able by every flow, and accordingly, the existing approach
based on (34) may not be useful. Note that, even if flow i
does not satisfy (34), it may still be LRD isolated. In the
above Example 1, one can assign 2.6 to flow 3 to ensure its
LRD isolation (which can be verified using the technique
to be proposed later), even though such a weight violates
(34).

As another example (hereafter called Example 2) show-
ing the deficiency of the existing approaches, assume that
the weight assignment for the same five flows as in Exam-
ple 1 is now {1.1, 2.1, 1, 4, 7.8}. It is clear that (34) cannot
be used to test if flows 3 and 4 (both violate (34)) are LRD
isolated or not. In addition, (18) in Definition 4.1 is not
effective either. More specifically, in order to use it to test
whether flow 4 can be guaranteed to be LRD isolated or
not, a naive approach will test if the ordering of 1,2,3,4,5 is
feasible, and because it is not, it will have to examine the
ordering of 1,3,2,4,5 and then the ordering of 2,3,1,4,5 and
so on. In the worst case, to test if flow i can be guaranteed

to be LRD isolated or not, all possible orderings involving
j lighter tailed flows, where 0 ≤ j ≤ (i − 1), have to be
tested. Thus, the (worse case) time complexity of the test-
ing process is O(i!). When the number of flows is large,
such an approach is clearly infeasible.

B. A Necessary and Sufficient Condition for the Guarantee

of LRD Isolation

We now determine, for a given flow i, not only the set
of lighter-tailed flows, denoted by fi, that can be ordered
before flow i in a feasible ordering, but also the minimum
contract weight to ensure the LRD isolation of flow i. To
this end, we first initialize fi to be empty. Then, if there
exists a flow k, where 1 ≤ k < i, which satisfies

λk

φk

<
γ −

∑

j∈fi
λj

∑N
j=1 φj −

∑

j∈fi
φj

(36)

we add flow k to fi, and update the right-hand side of
(36) which will be denoted by R(fi). We repeat the above
process until no such flow k exists, and denote the resulting
set by Fi, and accordingly, the final value of R(fi) by R(Fi).
Note that this process of obtaining Fi has the worst-case
time complexity of O(i2).

One can easily verify that when a flow k that satis-
fies (36) is added to fi, the resulting R(fi) increases. i.e.
R(fi) < R(fi ∪ k) ≤ R(Fi) if fi ⊆ Fi. Conversely, if we
were to add a flow k′ that does not satisfy (36) to fi, then
R(fi ∪ k′) ≤ R(fi). In other words, R(Fi) is the maximum
value that flow i can obtain from all flows that are lighter-
tailed than flow i. This observation is important for prov-
ing the following theorem which provides both a necessary
and sufficient condition for the LRD isolation guarantee of
flow i.

Theorem 5.1: Suppose there are N flows in a GPS
system which are numbered in the descending order of their
index parameters as 1, 2, ..., N , and their contract weights
are φ1, φ2, ..., φN , respectively. Then flow i is guaranteed
to be LRD isolated from other flows if and only if:

λi

φi

<
γ −

∑

j∈Fi
λj

∑N
j=1 φj −

∑

j∈Fi
φj

= R(Fi) (37)

Proof: (i) To show that (37) is a sufficient condition, we
note that flow i also satisfies (36), just as any flow k < i in
Fi does. Accordingly, if we let F ′

i = Fi ∪{i}, and note that
when fi is empty, R(fi) = γ

∑

N

j=1
φj

, we have the following

(based on the observation drawn preceding the Theorem):

γ −
∑

j∈F ′

i
λj

∑N
j=1 φj −

∑

j∈F ′

i
φj

>
γ −

∑

j∈Fi
λj

∑N
j=1 φj −

∑

j∈Fi
φj

>
γ

∑N
j=1 φj

Accordingly, we can easily conclude that
∑

j∈F ′

i
λj

∑

j∈F ′

i
φj

<
γ

∑N
j=1 φj

The above means that if we treat the flows in F ′
i as one

big flow with arrival rate
∑

j∈F ′

i
λj and weight

∑

j∈F ′

i
φ,
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it satisfies (34). Hence, according to Lemma 5.1, there
exists a feasible ordering with this big flow ordered first.
In other words, flow i can be feasibly ordered before any
heavier tailed flow. Note that the exact ordering of the
flows within Fi will not affect the LRD isolation of flow i.
In fact, the flows in Fi can be feasibly ordered according
to the order they are added to Fi in (36) with flow i being
ordered right after them.

(ii) we now prove that (37) is necessary by contradiction.
Suppose (37) does not hold for flow i, but there still exists
a feasible ordering with flow i ordered before any heavier
tailed flows. Denote the set of all the (lighter tailed) flows
that are feasibly ordered before flow i by F ∗

i (which may
be empty). According to (18), we should have:

λi

φi

<
γ −

∑

j∈F∗

i
λj

∑N
j=1 φj −

∑

j∈F∗

i
φj

= R(F ∗
i )

However, since F ∗
i contains zero or more flows in Fi,

and zero or more flows not in Fi, we have R(F ∗
i ) ≤ R(Fi)

based on the discussion preceding the Theorem. Or in other
words,

λi

φi

< R(F ∗
i ) ≤ R(Fi)

which contradicts with the assumption that (37) does not
hold for flow i. 2

Remark: If a flow satisfies (34), it will satisfy (36) but
not vice versa. With (37), whether a flow is guaranteed
to be LRD isolated or not depends only on the weights
assigned to the flows in Fi, and flow i itself. In previous
Example 1, one can easily verify that F3 = {1, 2}, and
R(F3) = (16 − 3)/(16 − 5.1) = 1.19. Hence, if φ3 = 2.6,
flow 3 satisfies (37) and thus is guaranteed to be LRD iso-
lated. On the other hand, in previous Example 2 (where
the weight assignment for five flows is {1.1, 2.1, 1, 4, 7.8}),
one can easily verify that since F3 = F4 = {1, 2}, and
R(F3) = R(F4) = 13/12.8, (37) cannot be satisfied by flow
3, and thus flow 3 is not guaranteed to be LRD isolated. On
the other hand, flow 4 satisfies (37), and thus is guaranteed
to be LRD isolated.

C. Weight Adjustment and Assignment to Ensure LRD

Isolation

Theorem 5.1 is also useful for weight assignment and ad-
justment to guarantee flow’s LRD isolation. More specif-
ically, the observation drawn preceding the theorem, i.e.,
R(Fi) is maximum with respect to flow i, serves as the
base for determining a minimal φi to guarantee the LRD
isolation of flow i.

For instance, consider again previous Example 2 but now
assume that only the weights assigned to flows 1, 2 and 4
are contract weights (i.e., non-adjustable). If we want to
ensure LRD isolation of flow 3, we must increase φ3 to
above 13/12.8. Such an increase can be accomplished if φ5

has an extra weight of 2 that can be transferred to flow 3
(and as a result, φ5 is reduced to 5.8 from 7.8).

The above technique to adjust the weight of a single
flow to ensure its LRD isolation can certainly be extended

to ensure LRD isolation of more than one flows provided
that there are extra weights in the GPS system that can
be adjusted/transferred. As a slightly different example
from those above (Example 3), consider five flows num-
bered in the descending order of their index parameters
whose arrival rates are more or less randomly distributed
as {2, 4, 5, 1, 3}. Suppose that γ = 17 (which is sufficient to
make the system stable) and the total weight is a constant
17. In addition, suppose that flow 2 (which is a Type 1
flow) has been assigned a contract weight of 7 (and thus
the method based on (34) cannot be used for weight assign-
ment to guarantee flow isolation of all the other flows as
discussed earlier). If all other four flows are Type 3 flows
that only require LRD isolation, we can use Theorem 5.1
to assign contract weights to them to guarantee their LRD
isolation as follows (note that one can easily verify that
flow 2 can be ordered first in any feasible ordering so it is
already flow isolated).

For the first flow, from Theorem 5.1, we need to have
φ1 > λ1 = 2, so we set φ1 = 2.1 (theoretically speaking,
we can set φ1 = 2 + ε where ε > 0 can have a very small
value). For flow 3, we first obtain F3 = {1, 2}, and then
from (37), we have

φ3 > λ3

∑5
1 φ − φ1 − φ2

γ − λ1 − λ2

= 5
17 − 2.1 − 7

17 − 2 − 4
= 3.59

Accordingly, we set φ3 = 3.6 to flow 3. Similarly, we set
φ4 = 0.72 and φ5 = 04. The extra weight available in the
system is 17 − 2.1 − 7 − 3.6 − 0.72 = 1.58, which may be
distributed among the five flows in an arbitrary manner.

To further illustrate the usefulness of the proposed tech-
nique, let us consider the following Corollary of Theorem
5.1 which is applicable to the case of on-line CAC.

Corollary 5.1: If a flow i is provided a contract weight
φi which guarantees it to be either flow isolated or just
LRD isolated, it will be guaranteed to be flow isolated or
just LRD isolated after a new flow j is admitted as long
as the system remains stable (note that flow j cannot take
away any existing contract weights already assigned to the
other flows so its contract weight can only come from the
extra weight available in the system before it is admitted).

Proof: If flow i was guaranteed to be flow isolated before
flow j is admitted, flow i must satisfy (34). Hence, flow i
is guaranteed to be flow isolated after flow j is admitted.

Now assume flow i was only guaranteed to be LRD iso-
lated but not guaranteed to be flow isolated before flow j is
admitted. Under this assumption, there existed a feasible
ordering in which the set of flows ordered in front of flow
i, Fi, are all lighter-tailed than flow i. Now treat Fi ∪ {i}
as one big flow F ′

i . Just as shown in the Part (i) of the
proof for Theorem 5.1, this big flow F ′

i satisfies (34) and
thus can be ordered in the first place in a feasible ordering.
Thus, flow i is still guaranteed to be LRD isolated. 2

4Note that with φ5 = 0, flow 5 gets best effort service
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Let us continue the above Example 3 by assuming the on-
line CAC receives a request for a new flow (flow 6). Suppose
that its arrival rate is λ6=1, and its index parameter is in
between those of flows 2 and 3. To ensure its LRD isolation,
we first obtain F6 = {1, 2} and then conclude we need a
contract φ6 > 0.718. Since we have an extra weight of 1.58,
we can assign φ6 = 0.72 and re-distribute the remaining
extra weight 1.58 − 0.72 = 0.86 among all six flows.

Note that from Corollary 5.1, admitting flow 6 as done
in the above case will not affect either the flow isolation or
LRD isolation of any flows, or in other words, their guaran-
teed (contracted) performance. There are, however, cases
where a heavy tailed flow has been assigned a weight more
than its arrival rate, and hence, the remaining weight is
not enough to ensure the LRD isolation of the newly ar-
rived flow. An example is that for the same set of 5 flows
described in Example 3, but this time flow 4, instead of
flow 2, is a Type 1 flow that requires a contract weight of
5. To ensure every other four flows are LRD isolated, we
need the following weight assignment: {2.1, 4.1, 5.1, 5, 0},
which leaves an extra weight of only 0.7. Hence, when flow
6 arrives, it needs φ6 > 1 to ensure its LRD isolation. In
such a case, the system may decide not to admit flow 6 or
admit it without ensuring its LRD isolation.

VI. Sample Path Behavior of LRD Traffic in a

PGPS System

The results obtained so for the GPS system are now ex-
tended to the PGPS system. While the GPS discipline
assumes that the input traffic behaves like a fluid such
that multiple sessions can be served bit by bit, the Packet
based GPS (PGPS) is a more practical discipline in that
only one packet at a time may be served. In other words,
a PGPS server considers the arrival of a packet only after
its last bit has been received. To manage this difference,
the PGPS server is often taken to consist of two parts, a
regulator and a PGPS core which is a GPS scheduler (see
Chapter 4 in [28]), as illustrated in Figure 2. Partially-
complete (or partially arrived) packets are queued in the
regulator which passes only complete (or arrived) packets
to the PGPS core. The output of this regulator, which is
the input to the PGPS core, is a series of impulses, whose
heights represent the sizes of the packets.

Let Ai be the session i input traffic to the PGPS server,
which is also the input to the regulator, Ai,reg be the out-
put traffic from the regulator, which is the input traffic to

the PGPS core, and finally A(s, t) be the total amount of
traffic arrived in time interval [s, t]. From Corollary 1 in
[2], the queuing process of Ai,reg(s, t) is also bounded by
the queuing process of Ai(s, t) with an extra length L, i.e.,
QPGPS

i (s, t) ≤ QGPS
i (s, t) + L, where L is the maximum

length of all arrived packets.. From the queuing process Qi

of Ai, which is WB(C, η, υ), we obtain the queuing process
QPGPS

i of Ai,reg as follows:

Pr{QPGPS
i (s, t) > q} ≤ Pr{QGPS

i (s, t) + L > q}

= Pr{QGPS
i (s, t) > q − L}

< Cie
−ηi(q−L)υi

≤ 5 Cie
ηiL

υi
e−ηiq

υi
(38)

which is WB(CeηLυi
, η, υ). In other words, the two GPS

upper bounds derived in Theorems 4.1 and 4.2 in the
previous section can be extended to the PGPS domain
via a simple transformation of the asymptotic constant
Ci → Cie

ηiL
υi

provided that the queue length or backlog is
large enough to exceed the maximum packet length L, i.e.,
q > L. Note that this assumption (q > L) is reasonable
because in practice, the buffer size B is much larger than
L, i.e. B � L, and in addition, since the main concern is
whether the backlog is about to exceed B, the values of q
that are of interest should be close to B and thus is larger
than L.

For completeness, we now present Theorem 6.1 and The-
orem 6.2 which are derived from Theorem 4.1 and Theorem
4.2 respectively via the use of the simple transformation
Ci → Cie

ηiL
υi

as follows:
Theorem 6.1: Let QPGPS,γ

i , 1 ≤ i ≤ N represent the
ith queuing process of the PGPS system with N LRD ar-
rival processes, then at any time t, for any queue length
q > L where L is the maximum packet length of all the N
sessions, we have:

Pr{QPGPS,γ
i > q} < CPGPS

i e−ηGP S
i q

υGP S
i (39)

where υGPS
i , ηGPS

i have already been defined in (22) and
(23), and

CPGPS
i = (

i
∑

j=1

Cje
η̄jL

υj

+ C∗)

where C∗ can be obtained similarly as in Theorem 3.2.
An alternate bound is given below, which, like the bound

in Theorem 4.1, applies only when there exists a 1 ≤ k ≤ i
for any given i, such that both η̄k and υk are minimal.

Theorem 6.2: Under the same assumptions used for
Theorem 4.2 except that the server is now a PGPS server,
at any time t, for any q > L > 2 where L is the maximum
packet length of all the N sessions:

Pr{QPGPS,γ
i > q} < CPGPS

i (q)e−ηGP S
i q

υGP S
i (40)

where υGPS
i , ηGPS

i have already been defined in (30) and

5see (48) in the Appendix.
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(31), and

CPGPS
i (q) = Ckeη̄kLυk

i
∏

l=1,l 6=k

hGPS
i (Cle

ηlL
υl

)

+

i
∑

j=1,j 6=k

[Cje
η̄jL

υj

j−1
∏

l=1,l 6=k

hGPS
i (Cle

ηlL
υl

)]

where

hGPS
i (Cle

ηlL
υl

) = (1 + Cle
η̄lL

υl
υGPS

i ηGPS
i (eηGP S

i − 1)

+Cle
η̄lL

υl
qυGP S

i ηGPS
i )

and by convention,
∏j−1

l=1,l 6=k hGPS
i (Cle

ηlL
υl ) = 1 when

j = 1.
Remark: Note that the above bounds shed light on the
LRD isolation among LRD sources sharing a PGPS server.
To illustrate this, consider a simple case of two independent
LRD sources with a feasible ordering of 1, 2. From Theo-
rem 4.1, the source which appears first in the feasible or-
dering is always guaranteed to be LRD isolated. Therefore,
the queuing process that is of interest is the last queuing
process in the feasible ordering, i.e., QPGPS,γ

2 . By applying
Theorems 6.1 and 6.2, three possible sets of bounds can be
obtained as follows:
(i)If η1 ≤ η2 and υ1 ≤ υ2 then from Theorem 6.2, we have:

Pr{QPGPS,γ
2 > q} < CPGPS

2′ (q)e−η1qυ1

(41)

where

CPGPS
2′ (q) = C1e

η1Lυ1

h(C2e
η2Lυ2

) + C2e
η2Lυ2

(ii)Else if η2 ≤ η1 and υ2 ≤ υ1 then from Theorem 6.2:

Pr{QPGPS,γ
2 > q} < CPGPS

2 (q)e−η2qυ2

(42)

where

CPGPS
2 (q) = C2e

η2Lυ2

h(C1e
η1Lυ1

) + C1e
η1Lυ1

(iii)In general, regardless of the relationship between η1

and η2 and that between υ1 and υ2, from Theorem 6.1, we
have

Pr{QPGPS,γ
2 > q} < (C1e

η1Lυ1

+ C2e
η2Lυ2

) ×

e−η(qυmax
0

−qυ
0 )e−ηqυ

(43)

where
η =

η1η2

η1 + η2
and υ = min {υ1, υ2}

The index parameter (as well as the decay rate parame-
ter) of the three bounds shown in (41)-(43) indicate the in-
fluence of source 1 on source 2. In the first case, the bound
on QPGPS,γ

2 decays slower, and in fact, it adopts the same
index parameter as that in the bound on the more heavier
tailed queuing process δSSQ,γ1

1 . This means that source 2
is not guaranteed to be LRD isolated from source 1. In the
second case, source 2 is not much affected by source 1 since
the bound on QPGPS,γ

2 adopts the same index parameter

as the bound on δSSQ,γ2

2 . Finally in the third case, which
is useful when neither of the first two cases is applicable,
the bound on QPGPS,γ

2 decays slower than both the bound

on δSSQ,γ1

1 and the bound on δSSQ,γ2

2 .

VII. Experimental Study of a Two Queue PGPS

System

In this section, we present numerical results on a PGPS
system with two LRD flows to demonstrate the useful-
ness of the bounds given by Theorem 6.1 and Theorem
6.2. Two scenarios are considered, each involving a HT
(heavier tailed) flow and a LT (lighter tailed) flow. The
HT flow is a bursty portion of a Star War MPEG trace
(ftp://thumper.bellcore.com/pub/vbr.video.trace), while
the LT flow is an artificially generated LRD flow using ag-
gregated Pareto On/Off processes [13].

In the first scenario, called “Non-LRD-Isolated”, the HT
flow appears first in the feasible ordering while the LT
(lighter tailed) flow appears next (last). In the second sce-
nario, called “LRD-Isolated”, the order of the feasible or-
dering is reversed. The aim of the graphical presentations is
to illustrate the LRD isolation properties of the two flows
in the PGPS server and to demonstrate that, given the
WB parameters of the individual flows, the derived PGPS
bounds will always bound the actual PGPS Pr{Q > B}
distribution.

A. Non-LRD-Isolated Scenario

The “Non-LRD-Isolated” scenario is described as fol-
lows, where PGPS capacity γ = 1100kbps and all other
parameters are shown in the table below. Note that to
simplify calculation, we introduce the normalized long term
average rate λ′

i based on λi).
Also, the index parameters are obtained via least-squares

matching of WB models to the numerically generated SSQ
process. This method of obtaining the Hurst parameter is
not recommended for real-time scenarios since the method
requires the luxury of simulating the sample LRD sources
countless times in order to obtain a reasonably stable SSQ
tail probability curve. This method is nonetheless sufficient
for us since the focus of this paper is on the multiplexing of
LRD sources and is not concerned with the nitty-gritty of
obtaining the index parameter of individual LRD sources.
For a more professional treatment in regard to a real-time
estimation of the index parameter of an individual LRD
source, the method suggested in [29] can always be incor-
porated.

HT Flow LT Flow
λi 655kbps 345kbps
λ′

i 0.5954 0.3136
υi 0.6 0.8
ηi 0.00025 0.00055

Cie
ηiL

υi
0.44 1

φi 0.7 0.3
γi 0.655 0.345

Given the above weight assignment of φHT = 0.7 and
φLT = 0.3, the feasible ordering is {HT , LT}, which in
fact is, according to (18), the only feasible ordering. As
a result, the bounds for the LT flows is of interest. Since
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ηHT < ηLT , υHT < υLT , the bounds given in (42) and (43)
for the LT flow are applicable. We recall from the previous
discussion that with the use of bound in (42), the LT flow
is expected to be severely influenced by the HT flow in this
“Non-LRD-Isolated” scenario.

The WB parameters of the two flows are obtained via
matching whereby the HT flow and the LT flow are sim-
ulated in SSQ conditions with service rate γHT = 0.655
and γLT = 0.345 respectively, and the resulting SSQ
Pr{Q > B} distribution is plotted out to find a matching
WB curve. It is noted that the SSQ service rate, i.e., γHT

and γLT , associated with the fictitious SSQ queue should be
chosen as large as possible while satisfying the constraints
γi ≤ ϕi(γ −

∑i−1
j=1 γj). This is because larger γHT and γLT

translate to bounds that decay faster, leading eventually
to PGPS bounds that are tighter (i.e. not overly conserva-
tive).

B. LRD-Isolated Scenario

Consider the case where all parameters remain the same
except the weight parameters have now been changed to
φHT = 0.4 and φLT = 0.6. Accordingly, the feasible order-
ing becomes {LT , HT}, which in fact is the only feasible
ordering according to (18). Since ηHT < ηLT , υHT < υLT ,
the PGPS bounds given in (41) and (43) are applicable to
the HT flow. We recall from the previous discussion that
with the use of the bound in (41), both flows are expected
to be well LRD isolated in this “LRD-Isolated” scenario.

C. Numerical Results and Further Discussion

Figure 3 (“Non-LRD-Isolated” scenario) and Figure
4 (“LRD-Isolated” scenario) illustrate the actual queue
length distribution of HT and LT flows in comparison with
the applicable PGPS bounds given by (41), (42) and (43).
More specifically, Figure 3(a) and Figure 4(a) illustrate
the numerical results for first flow in the feasible ordering.
Since the first flow in the feasible ordering is always fully
LRD isolated, the PGPS bound for the first flow is also
the flow’s SSQ Weibull bound (found by matching). On
the other hand, Figure 3(b) and Figure 4(b) are the plots
of interest as they illustrate the applicable PGPS bounds
for the second (i.e., last) flow in the feasible ordering, and
provide information on whether the flow is affected by the
first flow preceding it in the feasible ordering.

It is clear from Figure 3(b) and Figure 4(b) that the
PGPS bounds are effective in predicting whether the de-
cay slope of the last flow will be affected by the first flow
because they match the decay slope of the actual PGPS
queue length distribution. In the “Non-LRD-Isolated” sce-
nario, it is noted that the decay slope of the second flow,
the LT flow, has adopted the decay slope of the first flow,
the HT flow, meaning that the HT flow has induced LRD
burstiness into the LT flow. Both bounds from (41) and
(43) are fairly close in predicting that there will be induced
burstiness in the LT flow. In the “LRD Isolated” scenario,
the PGPS bound given by (42) provides a more accurate
prediction of the decay slope of the HT flow compared to
the PGPS bound given by (43), but both bounds from (42)

and (43) indicate that the decay rate slope of the HT flow
will not be affected by the LT flow. Finally, it is noted that
in both scenarios, the asymptotic constant of the PGPS
bound is rather conservative. This is because in the for-
mulation of the GPS and PGPS bounds, multiplexing gain
was not considered.

VIII. Conclusion

In this paper, we have established the relationship be-
tween what we call a Weibull Bounded Burstiness (WBB)
arrival process and a Weibull Bounded (WB) queuing pro-
cess, which brings more validity in the analysis of the upper
bounds on the queuing process with long range dependent
(LRD) traffic inputs.

As a major contribution, we have developed, via analysis,
several upper bounds on the queue length distribution of
the Generalized Processor Sharing (GPS) scheduling dis-
cipline with LRD traffic inputs. The GPS bounds have
also been extended to a Packet-based GPS (PGPS) sys-
tem. These explicit bounds show that the long range de-
pendency and queue length distribution of an LRD source
in a GPS system will in general not be adversely affected
despite the presence of other admitted sources as long as
it can be feasibly ordered before other heavier tailed flows.
This observation has been verified via simulation involving
two LRD flows in two different PGPS scenarios as well as
from other independent research efforts.

In addition, we have introduced a useful notion called
LRD isolation, which is different from the conventional un-
derstand of flow isolation. This notion broadens the range
of services that can be offered by GPS systems by admit-
ting flows requiring less strict performance guarantee (i.e.,
LRD isolation) than flow isolation that cannot be admitted
otherwise. Based on this notion, we have provided a fast
and effective method to test whether a flow can be guaran-
teed to be LRD isolated with a given GPS service weight
assignment. When the LRD isolation of a flow cannot be
ensured with the current weight assignment, the proposed
method can also be used to determine the minimum weight
required by the flow to ensure its LRD isolation, and thus
may be used to adjust its weight to the minimum required
value without affecting other flows’ LRD isolation. This is
particularly useful for on-line call admission control where
the QoS of both the new and existing flows need to be
satisfied. As LRD isolation could be useful for individ-
ual flow performance in GPS servers throughout multi-hop
networks, and this study will remain as our future work.
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Appendix A

The derivation of Lemma 3.1 is provided in this ap-
pendix. First we note that

E[

∫ t

s

A(u)du]

=

∫ ∞

x=0

Pr{

∫ t

s

A(u)du > x}dx

=

∫ ρ(t−s)

x=0

Pr{

∫ t

s

A(u)du > x}dx +

∫ ∞

x=0

Pr{

∫ t

s

A(u)du > ρ(t − s) + x}dx

< ρ(t − s) +

∫ ∞

x=0

Ce−µxυ

dx. (44)

Secondly, as long as υ > 0, we have

lim
t−s→∞

∫ ∞

x=0
Ce−µxυ

dx

t − s
= lim

t→∞

∫ t

x=0
Ce−µxυ

dx

t

= lim
t→∞

Ce−µtυ

= 0

(45)

Therefore,

ρ ≥ lim
t−s→∞

E[
∫ t

s
A(u)du]

t − s
2

Appendix B

Appendix B provides a list of inequalities which are heav-
ily utilized throughout the paper. The derivations for these
inequalities are also provided.
Inequality 1: For all y1, y2, ..., yN > 0 and 0 ≤ x < 1:

yx
1 + yx

2 + ... + yx
N ≥ (y1 + y2 + ... + yN )x (46)

Inequality 2: For all y1, y2, ..., yN > 0 and 0 ≤ x < 1:

yx
1 + yx

2 + ... + yx
N ≤ N(y1 + y2 + ... + yN )x (47)

Inequality 3: For all y1 > y2 > 0 and 0 ≤ x < 1:

yx
1 − yx

2 ≤ (y1 − y2)
x (48)

Derivations: Let fs(x) = sx where 0 ≤ x < 1, s > 0. Using
the single prime to denote the derivative of a function, we
obtain

f ′
s(x) = (sx)′ = (ex ln s)′ = ex ln s × ln s (49)

Since

ln s > 0 for s > 1 and ln s < 0 for s < 1 (50)

hence

f ′
s(x) > 0 for s > 1 and f ′

s(x) < 0 for s < 1 (51)

It is clear for any s < 1, when x increases, fs(x) will de-
crease, i.e.

fs(1) < fs(x) < fs(0) as long as s < 1 and 0 ≤ x < 1
(52)

Let us define a set of variables si = yi

y1+y2+...+yN
where all

y′
is > 0 and corresponding function

fsi
(x) = sx

i = (
yi

y1 + y2 + ... + yN

)x

It is clear that 0 < si < 1, therefore fsi
(1) < fsi

(x) <
fsi

(0), 0 < x < 1.
Now, the proof for Inequality 1:

N
∑

i=1

fsi
(x) ≥

N
∑

i=1

fsi
(1) ⇔

yx
1 + yx

2 + ... + yx
N

(y1 + y2 + ... + yN )x
≥ 1

⇔ yx
1 + yx

2 + ... + yx
N ≥ (y1 + y2 + ... + yN )x (53)

Now, the proof for Inequality 2:

N
∑

i=1

fsi
(x) ≤

N
∑

i=1

fsi
(0) ⇔

yx
1 + yx

2 + ... + yx
N

(y1 + y2 + ... + yN )x
≤ N

⇔ yx
1 + yx

2 + ... + yx
N ≤ N(y1 + y2 + ... + yN )x (54)

Now, the proof for Inequality 3: Given the condition that
y1 > y2, therefore, from Inequality 1,

(y1 − y2)
x + yx

2 ≥ [(y1 − y2) + y2]
x = yx

1

⇔ (y1 − y2)
x ≥ yx

1 − yx
22 (55)

Appendix C

The derivation of Lemma 3.2 is provided in this ap-
pendix. Set w ≥ 0, and let 0 < p < 1 be some constant.
Then we have

{W1(t) + W2(t) > w}

⊂ {W1(t) ≤ pw}
⋂

{W1(t) ≤ (1 − p)w}

= {W1(t) ≤ pw}
⋃

{W1(t) ≤ (1 − p)w}

= {W1(t) > pw}
⋃

{W1(t) > (1 − p)w}
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Thus,

Pr{W1(t) + W2(t) > w}

≤ Pr{W1(t) > pw} + Pr{W2(t) > (1 − p)w}

< C1e
−η1pwυ1

+ C2e
−η2(1−p)wυ2

Choose p according to [19] such that η1p = (1 − p)η2, i.e.
p = η2

η1+η2
. Define η = η1η2

η1+η2
and υ = min(υ1, υ2), we

obtain

Pr{W1(t) + W2(t) > w} < C1e
−ηwυ1

+ C2e
−ηwυ2

(56)

If 0 < w < 1, then (56) can reduce to

Pr{W1(t) + W2(t) > w} < (C1 + C2)e
−ηwυmax

(57)

where υmax = max[υ1, υ2];
If w > 1, then (56) can reduce to

Pr{W1(t) + W2(t) > w} < (C1 + C2)e
−ηwυ

(58)

where υ = min[υ1, υ2];
It is noted that both (57) and (58) have the Weibull

bound form except with different index parameters. The
next strategy is to combine (57) and (58) so that the same
index parameter, namely υ rather than υmax, can also be
used for the case where 0 < w < 1. Although this case
where the queue length is less than 1 is unimportant, for
completeness of the bound, we still consider how to provide
a bound this range in the following discussions. Firstly,
we notice that the bound using the index υmax in (57) is
always larger than the bound using the index in (58) for
the range 0 < w < 1. Once w > 1, the bound in 0 < w < 1
is always larger than the bound in (57). At w = 0 and at
w = 1, the bounds in (57) and (58) have exactly the same
values. Hence in order to extend (58), which uses the index
υ, to provide a bound for the case where 0 < w < 1, we
can always add an additional asymptotic constant factor
C∗

2 to raise the bound of (58). This additional asymptotic
constant C∗

2 can be easily obtained and is related to the
maximum displacement between (57) and (58) when 0 <
w < 1. More specifically, let

f(w) = (C1 + C2)e
−ηwυmax

− (C1 + C2)e
−ηwυ

(59)

Notice that f(w) is zero at w = 0 and w = 1, and f(w) >
0 only for 0 < w < 1, where both e−ηwυmax

and e−ηwυ

monotonically decreases with w, therefore, there exists a
unique maximum point of f(w) for w ∈ (0, 1). Let w0

maximize f(w) for 0 < w < 1. Specifically, w0 is the
solution to the following non-algebraic equation:

e−ηwυmax

wυmax
υmax =

e−ηwυ

wυ
υ (60)

Hence the additional asymptotic constant C∗
2 is given by:

C∗
2 = f(w0) × eηwυ

0

= (C1 + C2)[e
−ηw

υmax
0 − e−ηwυ

0 ] × eηwυ
0

= (C1 + C2)[e
−η(wυmax

0
−wυ

0 ) − 1] (61)

Therefore,

Pr{W1(t) + W2(t) > w} < (C1 + C2 + C∗
2 )e−ηwυ

which can be further simplified to:

Pr{W1(t) + W2(t) > w} < (C1 + C2)e
−η(wυmax

0
−wυ

0 )e−ηwυ

(62)
where w ≥ 0.2

It is noted that if υ1 = υ2 (i.e. the LRD queuing pro-
cesses have identical index parameters or Hurst parame-
ters), Hence the bound in (62) is a tighter bound in the in-
dex parameter for the case of two aggregate LRD queuing
processes with identical index parameters compared to the
case of two aggregate LRD queuing processes with different
index parameters. In the latter case, the bound adopts the
index parameter of the more heavier tailed queuing process
making the bound conservative.

Finally, without loss of generality, let η2 ≤ η1. Hence
the range of values for η is as follows:

η2

2
≤ η ≤ η2 , i.e.

min(η1, η2)

2
≤ η ≤ min(η1, η2) (63)

The lower bound for η is obtained by considering the
situation where η1 ≈ η2 while the upper bound is obtained
by considering the situation where η2 is far smaller than
η1.

Appendix D

The derivation of Lemma 3.3 and Theorem 3.3 is pro-
vided in this appendix.

To derive Lemma 3.3, set t > 0 and w > 2. Let wt
1

denote the probability density function of W1(t). We have:

Pr{W1(t) + W2(t) > w}

=

∫ ∞

q=0

Pr{W1(t) ∈ [q, q + dq]} × Pr{W2(t) > w − q}

=

∫ ∞

q=0

wt
1(q) × Pr{W2(t) > w − q}dq (64)

The integral in (64) can be decomposed into 2 portions,
i.e., the first goes from q = 0 to q = w and the second from
q = w to q = ∞.

For portion 1, as we consider w ≥ 2, we have:

∫ w

q=0

wt
1(q) × Pr{W2(t) > w − q}dq

<

∫ w

q=0

wt
1(q)C2e

−η2(w−q)υ2

dq

= (−

∫ ∞

q

wt
1(u)du) × C2e

−η2(w−q)υ2

|wq=0 +

∫ w

q=0

C2η2υ2(w − q)υ2−1e−η2(w−q)υ2

∫ ∞

q

wt
1(u)dudq

≤ C2e
−η2wυ2

∫ ∞

0

wt
1(q)dq − C2

∫ ∞

w

wt
1(q)dq
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+C1C2υ2η2

∫ 1

q=0

(w − q)υ2−1e−η2(w−q)υ2−η1qυ1

dq

+C1C2υ2η2

∫ w

q=1

(w − q)υ2−1e−η2(w−q)υ2−η1qυ1

dq

≤ C2e
−η2wυ2

+

C1C2υ2η2

∫ 1

q=0

e−η2(w−q)υ2−η1qυ1

dq +

C2C1υ2η2e
−η2wυ2

∫ w

q=1

(w − q)υ2−1e−η1qυ1

eη2qυ2

dq

≤ C2e
−η2wυ2

+ C1C2υ2η2

∫ 1

q=0

e−η2(w−q)υ2

dq +

C2C1υ2η2e
−η2wυ2

∫ w

q=1

(w − q)υ2−1e−[η1qυ1−η2qυ2 ]dq

(65)

Since the second integration in (65) can be simplified to:

∫ 1

q=0

e−η2(w−q)υ2

dq =

e−η2(w−q)υ2

|1q=0 −

∫ 1

q=0

d
[

e−η2(w−q)υ2

]

= e−η2(w−1)υ2

− e−η2(w)υ2

−
∫ 1

q=0

[

η2υ2(w − q)υ2−1
]

e−η2(w−q)υ2

dq (66)

Since 0 < (w − q)υ2−1 ≤ 1, we further have

∫ 1

q=0

e−η2(w−q)υ2

dq ≤ e−η2(w−1)υ2

− e−η2(w)υ2

≤ (eη2 − 1)e−η2wυ2

(67)

Since it is assumed that η1 ≥ η2 and υ1 ≥ υ2, we substi-
tute (67) into (65) and(65) can be transformed into

∫ w

q=0

wt
1(q) × Pr{W2(t) > w − q}dq

< C2e
−η2wυ2

+ C2C1υ2η2(e
υ2 − 1)e−η2wυ2

+C2C1υ2η2e
−η2wυ2

∫ w

q=1

(w − q)υ2−1dq

≤ C2[1 + C1υ2η2(e
η2 − 1) + C1w

υ2η2]e
−η2wυ2

(68)

For portion 2, we have:

∫ ∞

q=w

wt
1(q) × Pr{W2(t) > w − q}dq

≤

∫ w

q=0

wt
1(q)dq < C1e

−η1wυ1

(69)

By plugging expressions (68) and (69) into (64) we obtain

Pr{W1(t) + W2(t) > w}

≤ (C2(1 + C1υη(eη − 1) + C1w
υη) + C1)e

−ηwυ

= (C2h(C1) + C1)e
−ηwυ

(70)

where η = min{η1, η2}, υ = min{υ1, υ2} and

h(x) = 1 + xυη(eη − 1) + xwυη.2

Based on Lemma 3.3, the proof of Theorem 3.3 can be re-
cursively obtained but with a slight modification. Consider
N queues Wi(t), where 0 ≤ i ≤ N , that are being aggre-
gated recursively according to the above procedure, start-
ing with the aggregate queue W ′

N−1(t) = WN−1(t)+WN (t)
first. By virtue of Lemma 3.3, it is easy to see that the
decay rate and index parameter associated with W ′

N−1(t)
are ηN and υN respectively. In addition, the asymptotic
constant with parameter w associated with W ′

N−1(t) is

CWB
2 (w) = CNh(CN−1) + CN−1. Next, consider the ag-

gregate queue W ′
N−2(t) = WN−2(t) + W ′

N−1(t). The de-
cay rate and index parameter stay the same as ηN and
υN . On the other hand, the asymptotic constant in (65)
is no longer C2 but CWB

2 (w − q). Although the pres-
ence of CWB

2 (q) breaks the recursive nature of (65), since
CWB

2 (q) is a monotonically increasing function of q, we
can replace CWB

2 (q) with CWB
2 (w). This not only pre-

serves the inequality in (65) but makes its usage recursive
since the replaced asymptotic constant, i.e. CWB

2 (w), is
no longer part of the integration and can be treated in
the same fashion as the constant C2. The asymptotic con-
stant with parameter w associated with W ′

N−2(t) now be-

comes CWB
3 (w) = CNh(CN−1)h(CN−2)+CN−1h(CN−2)+

CN−2. If the aggregation is continued in this manner, i.e.
W ′

N−j(t) = WN−j(t) + W ′
N−j+1(t) for 1 ≤ j ≤ N − 1,

then the proof will be completed. The asymptotic con-
stant with parameter w associated with the last aggregate
W ′

1(t) = W1(t) + W ′
2(t) =

∑N
i=1 Wi(t) is thus given in

(17).2


