A Hybrid Approach to Key Management for
Enhanced Security in Ad Hoc Networks

Aruna Balasubramaniané, Sumita Mishra* and Ramalingam Sridharé**

¢Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260-2000
{ab42, rsridhar }@cse.buffalo.edu

*CompSys Technologies Inc, Amherst, NY 14228
mishra@compsystech.com

Abstract

Key management is one of the most challenging tasks in developing security solutions for wireless ad hoc networks.
Most of the security primitives can only be realized if an efficient, robust and secure key generation and management
system is developed. Symmetric key cryptosystems are difficult to incorporate in an ad hoc decentralized domain, and
are not scalable. A public key cryptosystem is computationally expensive and a decentralized certification service is
essential for its deployment. In this paper, we present a locally symmetric/globally asymmetric key management solution
for wireless ad hoc networks that overcomes the limitations of both. The proposed hybrid approach does not require
prior trust assumptions or the presence of a centralized certification authority. Preliminary analysis and results indicate
that this approach can achieve a better performance when compared with the traditional solutions. We show that our
approach is scalable, and robust with respect to node failures, topology changes, node speed and loss of connectivity.
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I. INTRODUCTION

Mobile ad hoc networks (MANETS) are formed among a set of devices that communicate using the wireless
radio link and are provided with minimum infrastructure support. The adoption of this technology is becoming
widespread at homes, industry and government organizations largely owing to their ease of use, flexibility and
low installation costs. One of the most profound impacts of wireless ad hoc technology is in mission critical
applications. It is indispensable in the military, national defense and rescue/relief operations, where wires
and other infrastructure cannot be guaranteed and networks need to be formed according to convenience.
Nevertheless, there is a growing concern in using this technology because of its security vulnerabilities.

Use of wireless links renders an ad hoc network susceptible to link attacks ranging from passive eavesdropping
to masquerading, message replay, and message distortion. Nodes roam in a hostile environment with relatively
poor physical protection and can be compromised and impersonated. Key generation and distribution is
one of the most challenging tasks faced by the security protocol designers in this domain. Traditional key
management solutions require online trusted authorities or certificate repositories and are not well-suited for
ad hoc networks. Key management solutions for ad hoc networks also needs to adapt to large network sizes,
frequent loss of connectivity and often needs to cater to low-power battery operated mobile devices. To the
best of our knowledge there is no comprehensive key management solution in this domain and most existing
ones have severe limitations [1].

This paper describes our solution to the key management problem in ad hoc networks. The goal is to
provide a robust, decentralized, scalable and secure key management infrastructure and is designed to reduce
computational complexity. To achieve this, we propose a hybrid (symmetric and asymmetric key based) key
generation scheme. While a symmetric cryptosystem is suitable for low power devices, it is not scalable,
and while asymmetric cryptosystems are more secure and scalable, they are computationally intensive. We
propose a locally symmetric and globally asymmetric key based solution that overcomes the limitations of
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both. Localization is achieved by grouping nodes into clusters. There is no assumption of pre-distributed
symmetric keys or an external certification authority.

To this end, we have designed a novel key generation algorithm for simultaneously generating pair-wise
secret keys and (public, private) key pairs for each node in the cluster in a low cost initialization phase. The
uniqueness of this design is that, the pair-wise secret keys for symmetric encryption are not explicitly exchanged
but are calculated by each node independently from a partial key. This not only allows a decentralized
key exchange protocol, but also reduces the volume of message exchange and thus improves performance.
Decentralization of the certification authority is achieved using threshold cryptography [2] [3].

Though the concept of threshold cryptography and secret sharing have been used for key management [4],
[5], we present a unique approach that provides significant enhancement over available solutions. Recently,
a cluster-based scheme was proposed for key management in ad hoc networks, using threshold cryptography
for decentralization [6]. Our solution is significantly different from this approach with respect to the cluster-
management scheme and the use of the hybrid protocol.

A simulation model has been developed and an extensive evaluation is presented. The analysis indicates that
the security levels achieved for ad hoc networks is significantly enhanced using a hybrid symmetric/asymmetric
cryptosystem when compared with traditional approaches. The domain of this work is ad hoc networks; but we
believe that the approach can be easily adapted to other wireless networks and in particular sensor networks,
and even possibly wired networks (which needs further study).

The paper is organized as follows - The next section presents related research and in section 3 we detail
the concepts used in the solution. In section 4 we describe the hybrid security solution Section 5 presents the
evaluation of the security architecture both by analysis and simulation. We simulated ad hoc networks that
use our architecture, for proof of concept and for studying the performance and overhead. The conclusions
and future work are presented in section 6.

II. SECURITY IN AD HOC NETWORKS

Recently several research efforts have addressed the issue of key management for ad hoc networks. Most of
these efforts focus on solutions based on asymmetric techniques, while symmetric cryptosystems are studied
more in the context of sensor networks [7], [8]. Recently, a distributed symmetric key management solution
for ad hoc networks was proposed [9]. This solution is however, more suitable for nodes that are within
each others range, rather than multi-hop nodes. Key management services using asymmetric cryptosystems,
usually seek to establish a public key infrastructure or a certification service within the constraints of the ad
hoc network domain.

Zhou and Haas [4] used the concept of threshold cryptography for distributing certification services. The
private key of the certification authority (CA) is distributed among a group of special servers and node requests
these servers to provide distributed certification services. However, the solution does not address issues of
availability and connectivity to the special servers. Also, use of special servers may not always be possible in
an ad hoc network.

Along similar lines, Yi and Kravets, provides a flexible, decentralized and mobile certification solution
by distributing the CA functionality to selected nodes based on security and physical characteristics of the
node [10]. This work addresses issues of availability and connectivity to the mobile agents, but are not truly
decentralized. Kong, et al provide a more decentralized solution where every node stores a key share of the
certification authority’s signing key. Certification services are provided by one-hop neighbors that can sign
partial certificates [5]. However, restricting certification authority to one-hop neighborhood may affect the
availability. Increasing the availability, by decreasing the required number of partial signatures, would render
the system susceptible to attacks.

Identity-based cryptosystems [11], are based on binding the public key of a node to its identity. Several
solutions have been proposed for distributed key management using identity-based systems [12]. An important
limitations in having a unique private key mapped to the identity of a node is that, refreshing the keys in
case of node compromise is difficult. Recently a cluster-based scheme was proposed for securing ad hoc
networks using cluster heads as the secret share agents and the secret shares are distributed using threshold
cryptography [6]. However, connectivity and availability issues have to be addressed if nodes need to contact



a certain number of cluster heads for certification services. Cluster heads may also be vulnerable to single
point of attack.

Hubaux et al [13], proposed a public key infrastructure based on certificate graphs such as that used in
PGP [14], where nodes store a subset of the certificate graph in their repository. Two nodes (A and B), that
need to obtain each other’s certificate merge their repositories and get a full certificate chain from A to B.
The primary limitation is the time taken and the complexity for initialization and formation of the certificate
graphs. Also, in sparse networks, there may not be enough trust relationships to form a certificate chain
when two repositories are combined. Asokan and Ginzboog extended two-party Diffie-Hellman key exchange
to multi-party [15]. Similarly there are several group key agreement schemes [16], [17] for securing group
communication such as secure broadcast, but these cannot be adapted to two-party communication.

As can be seen, most of the available solutions for key management either need special servers, are not
scalable, assume prior trust relationships, or are vulnerable to attacks. There is a need for a comprehensive
solution that addresses these issues and is at the same time low in complexity. In our work, security solutions
are looked at from a hybrid perspective and the adoption of both symmetric and asymmetric key cryptosystems
is introduced. The proposed solution is well suited for ad hoc networks, and addresses the concerns raised
above.

III. DESIGN CONCEPTS

In our hybrid key management solution, nodes are divided into non-overlapping clusters and local intra-
cluster communication is secured using symmetric key cryptosystems while asymmetric cryptosystem is used
to secure global inter-cluster communication. The scalability issues of symmetric key encryption related to
exchanging keys with all nodes in the network, is addressed by restricting the participating entities to within a
cluster. On the other hand, assymetric cryptosystem is used only for inter-cluster communication, reducing the
number of messages encrypted using asymmetric keys, thus reducing the complexity of the operation. To build
a decentralized solution, we have designed a distributed certification authority using threshold cryptography
for asymmetric cryptosystems and a decentralized key distribution mechanism for exchanging symmetric keys.

In this section, we will give a brief overview of the design concepts.

A. Threshold cryptography

The security of an asymmetric key cryptosystem, largely depend on reliably communicating a nodes public
key to others. One of the key threats in obtaining the authentic public key of a node is the intruder-in-the-
middle attack [13]. To solve this problem a certification authority (CA) is used, that certifies the authenticity
of a node and reliably provides its public key. Traditionally, the certification authority is a central server or
a trusted third party server centrally located.

To achieve decentralization of the CA we use a threshold cryptography scheme where the certification
service is distributed to the nodes in a k-out-of-n manner. This is achieved by distributing a secret share to
all n nodes, such that any k£ nodes when combined can regenerate the certification authority’s signing key,
but no combination of &k — 1 shares can recreate the key. The scheme is ideal for a dynamic network where a
temporary loss of connectivity is common. A genuine user needs to contact only k of the n nodes to obtain
certification services. However, an adversary has to corrupt at least k¥ nodes to be able to masquerade as the
certification authority. When Byzantine conditions are assumed [18], the threshold cryptography scheme is
secure when k < n/2.

B. Cluster-based approach

Clustering increases scalability by restricting information sharing and computations to within a cluster. In
this solution, we also use clustering to provide localized services.

Two most common cluster architectures are : Hierarchical and Flat. In an hierarchical architecture special
nodes called cluster heads are delegated authority to manage the other nodes in the network. In a flat
architecture, all nodes are considered equal and all management protocols are truly decentralized. While
using hierarchical clustering, special algorithms need to be designed for choosing the cluster heads and these
cluster heads are vulnerable to single point of attack or failure. In this solution we advocate a flat architecture



where the cluster head is nominal with very few additional responsibilities and any node in the cluster can
be designated as the head. Apart from ensuring that the solution is decentralized, this design also helps in
reducing the risk of single point of attack/failure.

IV. HYBRID APPROACH TO KEY MANAGEMENT

The protocol can be divided into three conceptual tasks - a) Clustering and key generation b) Determining
keys for secure symmetric and asymmetric communication ¢) Building a distributed certificate authority

A. Clustering and Key generation
A.1 Clustering

Cluster-based solutions have been used for several applications, such as reliable routing [19], power control
[20] and others, such as the one proposed in [21]. Any of the available clustering schemes can be used
or clusters can be formed as needed. In this work, the solution architecture is not affected greatly by the
algorithm used for clustering, but is only affected by the number of nodes in each cluster. As will be detailed in
the next section, any node can take up the role of the cluster head with only minimal additional responsibility.
Inter-cluster communication is seamless and proceeds as though there are no clusters.

Clustering schemes particularly suited for our proposed solution is currently being investigated.

A.2 Protocol for key generation

The key generation protocol is adapted from the GDH.2 algorithm [22], and extends Diffie-Hellman key
exchange to n parties. There are several protocols that adopt this algorithm for generating keys [16] and
for authenticated key exchange [23] used for securing group communication. In this paper, we have designed
a GDH.2 based key generation algorithm for point-to-point communication. Though, both symmetric and
asymmetric keys are generated for each node, it can be shown that the complexity of generating both keys is
much less than the sum of their complexities. In fact, in certain cases, it can be shown that the complexity
is less than that of generating only symmetric or only asymmetric keys.

Set Up:
The following notations are used throughout the protocol description,

G Unique subgroup of Z, of order ¢

with primes p and ¢

Order of the algebraic group

Exponentiation base, generator in group G
Total number of nodes in the cluster

Secret exponent generated by the **

member of the cluster

Z; Message exchanged between i* and the

(i + 1)** element of the cluster

C; || Partial key generated by node i in the k** round

>3 0

e

All arithmetic is performed in the cyclic group G of prime order g, which is the subgroup of Z7 for a prime
p such as p = kq + 1 for some small £ < n. The security of the algorithm is based on the difficulty of solving
discrete logarithm problems in a subgroup with this setting [24].

The basic cryptographic property used in this algorithm is that, any message M can be written as

M = o€ mod p (1)

for a primitive root « of prime p, and C is the discrete logarithm of M for (a mod p). An adversary having
the values of (M, a, p) cannot deduce the value of C because of the difficulty of computing discrete logarithms
[24]. By the cyclic group property, if the inverse of an integer K is K ~! mod g,

JE*RIxK~1 o p=Jkl (2)



Another important result is the Euler’s theorem, which states that
X*N) =1 mod N, for all integers N, when ged(X, N) = 1 (3)

where ¢ is Euler’s totient function [24].
Key generation:

The key generation protocol is implemented in n rounds where in the first n-1 rounds, the participating
entities contribute secret keys. In the final round, the nt® node creates the partial keys from the individual
contributions and multicasts them to the other cluster nodes. The key generation uses contributory group
key agreement principles, where every node contributes to the formation of the key.

The nodes in the cluster are assumed to order themselves and assign numbers from 1 to n such that an
entity Node i would know the entities with assignments Node i+1 and Node i-1. The set up variables G, p,
and q are generated by Node 1 and used only by Node I and thus, the variables need not to be exchanged
with the other nodes in the cluster. « is used by Nodes 1 and 2 and is communicated from Node 1 to Node 2.

The initialization phase of the protocol is described in Fig. 1.

Round i
1. Node i selects a secret key IN; such that, N; € Z;
2. Node i to Node i+1,

Nq*Ng...N;
j=a 1* 2N O

Node i *s Node i+1
Cix = aNi=Nex- NNy ¢ [1, 4] (4)

Fig. 1. Key generation protocol: Initialization phase (n-1 rounds)

Node 1 initiates the key generation algorithm by generating a secret key N7 and communicating to Node 2.
The first message, sent from Node 1 to Node 2 is,

— AV
Node 1 X222 Node 2 (5)

M;, (refer Fig .1) represents the intermediate key generated by nodes in step i and C;;, is the intermediate
partial key of Node k in step i. The partial contribution of a node, is the total contribution (M;) without its
own contribution. M; and C;; are computed using the input from step i-1 for 1 > 2 as follows,

M; = (M; 1) (6)
Cir = (Cim1p)NiVk € (1,5 — 1) (7)
Cii= M (8)

By building up these contributions, the last node in the cluster, Node n, receives the message,
Mnfl _ aNl*N2---Nn—1

Cr1,k = aN* N2 No-)/Niwl € (1,0 — 1) (9)

The n'* round is implemented by Node n using the following algorithm.
Round n:

1. Node n generates a secret key N, such that, N, € Z;

2. Node n calculates partial keys as

Croyp = o N1xN2x-Nn)/Ne g € (1, ) (10)

and multicasts the key to the other nodes in the cluster.



3. Node i V i € [1,n] create their own (private, public) key pair using Cy; as the public key, such that the
private key PV; satisfies the equation

(Cri)PVi = 1 mod ¢(P; * Q;) (11)

where P; and Q; are large primes generated by Node i. Equation. 11 ensures that the (private, public) key
pair can be used for assymetric key cryptosystems and will elaborated in the next section.
4. All nodes publish the value of P;*@;, Vi € [1,n] as one of the public key pairs.

The message exchanges during key generation is illustrated in Fig. 2. Keys are refreshed periodically, to
ensure security.

—» 1-1rounds: Exchanging key contribution

/’1 - - = => n-thround: Distributing partial keys
’I
1
1
,/
/ 7

Fig. 2. Illustration of the key generation algorithm

B. Determining keys for symmetric and asymmetric cryptosystems

The partial keys generated during initialization are used to determine the symmetric and asymmetric keys
for securing communication.
B.1 Asymmetric key generation

To design an asymmetric key cryptosystem, a (public key, private key) pair is generated such that any
message encrypted using one of the keys can only be decrypted using the corresponding key pair. In our
solution, we have determined the public key of Node k to be of the form, (Cy x, L), where L = ¢(Py, Q).

Ch i is the partial key of Node k that has been multicast during key distribution as shown in Fig. 2. The
private key corresponding to this public key is PV; and known only to Node k.

The encryption/decryption algorithm used is adapted from RSA [25] and the public and private key pair
are determined so that the same algorithm used for encryption and decryption in RSA, can be used in this
case as well. To show this, consider a message M < P; x J; encrypted by Node i using the private key as

Encryption(M) = MFVi mod (P;* Q;) = D (12)
The crypto-message D is decrypted as follows

Decryption(D) = DU ke mod (P * Q;)
= D mod (P; * Q;)
= MPV*Cni mod (P * Q;)
= MEPQ+L yod (P % Q;) (from Eqn. 11),
= M s M**PxQi) 1mod( P+ Q;)
= M (from Euler’s theorem Eqn. 3) (13)



Usually, both the private and the public key is determined by the node itself. Each node then publishes
it’s public key and requests for a certificate binding the node and its respective public key. In the absence
of an external authentication agent such as a central server, it may be difficult to verify the validity of the
published public keys. This situation creates a potentially security hazard. However, in this solution, the
public key is already determined and multicast to all other nodes in the cluster, and the private key is chosen
accordingly. Because of this, a malicious user, cannot spoof a Node (say A), by publishing a false public key
of A and obtaining the certificate for this wrong key. Additionally, Node n, cannot publish the wrong public
key of Node A during multicast, because Node A can verify the validity of its own public key.

The security of the scheme is based on the difficulty of factoring and has been discussed in detail in [25].
Strong prime numbers need to be chosen to ensure the security of the solution. Security is also determined
by the length of the secret key and the key refresh time.

B.2 Symmetric key generation

In symmetric key cryptosystems, a secret key is shared between each pair of nodes and pair-wise commu-
nication is secured using this key. Our algorithm is unique in that no pair-wise key exchange is needed for
generating the secret keys. Instead, the partial keys are used by a node individually, to create pair-wise keys
with each node in the cluster. In order to use this algorithm for symmetric key encryption, the following
statement needs to be proved.

Statement 2. If Node i and Node j individually generate a secret key to secure their pair-wise communication,
secret key generated by Node i = secret key generated by Node j, and any other node cannot generate the same
key.

Proof. Assume Nodes i and j in a cluster need to establish a secure communication. Node i and all other
nodes in the cluster know the public key of Node j, which is a(N1*N2--Nn)/N; - Node i knows its own secret key
N; and this is not known to any other node in the network. It calculates the shared secret as,

Shared Secret (Node i) = (Public key of Node j) Nt
(NN /(N )*(N; )
a(Nl*“'N")/(N"*Nf)(from Eqn. 2)

Similarly, Node j knows the public key of Node %, which is o/(N1*N2--Nn)/Ni

Shared Secret (Node j) = (Public key of Node i) Nyt
a(Nl*...Nn/(N,-)*(Ngl)

aNveNa) [(N#N5) (from, Eqn. 2)
Shared Secret (Node 1)

Hence Nodes i and j have created the same shared secret key even though pair-wise keys are not exchanged
explicitly. It has been proven that Ni_1 and N, ]_—1 cannot be calculated without the knowledge of N; and N;
[23]. This in turn proves that the pair wise secret key cannot be computed by an intruder or any other node,
without the knowledge of N; or N; and thus is secure.

C. Distributed certification service.

In this work, we have designed a distributed certification authority to securely obtain the public key of an
entity. For decentralization, threshold cryptography is used, where the private key of the certification service
is distributed in a k-out-of-n manner to all nodes in the network. Any k of these nodes can combine their
secret shares to form the private key, while the public key of the service is common knowledge. The maximum
number of malicious users is assumed to be k—1 and no combination of k£ — 1 partial secret keys can regenerate
the private key of the certificate authority. The algorithm for certificate distribution is presented in Fig. 3.



Certificate generation

1. Node A requests the cluster nodes for a certificate validating its
public key.

2. The nodes in the cluster that believe in the authenticity of Node
A, reply with a partial certificate.

3. The partial certificate contains, among other things, the identity
of the requesting node, and the public key of A signed using the
secret key share.

4. Node A collects k such certificate shares and combines them to
form the complete certificate.

Certificate verification

1. A checks the validity of the certificate.

2. If the combined certificate is not valid, A uses a different com-
bination of certificate shares to generate the complete certificate.

Fig. 3. Certification service.

Note that any node in the network can assume the role of a distributed certification authority because of
its ability to create partial signatures. In this respect, our solution is similar in concept to that presented in
[6]. However, we do not restrict the service providing capabilities to one-hop neighbors. Instead, localized
certification services are provided by the cluster nodes.

An entity signs a partial certificate only if it is convinced of the authenticity of a node. We suggest the use
of some out-of-bound physical proof or the use of location-limited side channel for authentication [26]. When
new nodes join the network, they can form a new cluster, use an auxiliary key agreement methodology [16]
to generate a new pair of keys in an existing cluster or wait for the next key refresh interval.

Certificate validity: A certificate is valid only for a time period and is specified when issued. The certificate
expires after this time and a new certificate request needs to be generated. If a node moves and joins a new
cluster in this time period, the certificate can either be renewed, or a new pair of keys can be generated.

Certificate revocation: A certificate can be revoked on their expiry or evidence of bad behavior. When a
certificate is revoked due to misbehavior, the node id is maintained in a certificate revocation list (CRL) and
the CRL is flooded to all the nodes in the network. The certificate expiry information is available along with
the certificate, and can be verified easily. All nodes also check the CRL when presented with a certificate, to
check its validity.

Certificate renewal: A certificate is renewed either if it expires or if the cryptographic keys are refreshed. To
renew a certificate, an entity presents its old certificate, and the local certification service checks the validity
of the certificate and the CRL to issue a new certificate. If a node moves to a new cluster, the authenticity
of the node needs to be proved again by some out-of-bound mechanism for issuing certificates. If certificates
are renewed due to key refresh, the certificate generation process is repeated.

Secret share update: The secret shares of each nodes need to be updated periodically, to ensure that a
mobile adversary does not compromise k users over a period of time. If such a compromise occurs, the private
key of the certification authority is no longer a secret and spurious certificates can be signed by the adversary.
By updating the secret share of each entity periodically, a malicious node needs to compromise k users within
the period to be able to obtain the private key. Secret shares are updated such that the total secret remains
the same. There has been several methodologies proposed for secret share updates [5], [4], [27] and we will
adopt one such methodology. Currently, we are investigating secret share update schemes most suitable for
our approach. Another desirable property is verifiable secret shares (VSS), in which signing certificates with
a wrong secret share can be detected publicly [28]. Some pro-active secret share update schemes, also discuss
the use of verifiable secret shares [27] and our scheme can be enhanced by adopting the VSS technique.



V. EVALUATION
A. Protocol Analysis

The goals of the security solution are security, scalability, robustness and low computational cost. In this
section, we will present an analysis to show that the protocol achieves the objectives mentioned.

A.1 Security

To ensure that the designed solution is secure, the different stages of the protocol is analyzed.

Key generation: Key generation involves exchanging partial contributions (alternatively, the secret key)
among nodes. The secrecy of the partial contributions is ensured by the multi-party Diffie-Hellman key
exchange mechanism used [22]. The intermediate secret key and the intermediate partial keys cannot be used
to construct the secret keys of the nodes and thus they are not susceptible to eavesdropping attacks.

Key distribution: In the n'* round of the protocol, the partial keys are distributed to all the nodes in
the network and any eavesdropper, tuned to the transmission frequency, can spoof the information exchange.
However, the partial keys cannot be used to construct the secret key and hence the key distribution mechanism
is not a potential security risk [22].

Security of symmetric encryption: The security of the symmetric key encryption is based on the secrecy of
the pair-wise secret key. To determine the pair-wise secret key of two nodes, A and B, the inverse of the secret
keys, namely Ngl or Ngl, need to be known. It has been shown that the inverse cannot be calculated without
the knowledge of the secret keys N4 and Np that are known only to A and B, as discussed in earlier. Thus,
the symmetric key cannot be constructed by a malicious node. Additionally, the adoption of the contributory
key agreement protocol GDH.2, provides resistance to known-key attacks and offers perfect forward secrecy
[23].

Security of asymmetric encryption: The asymmetric encryption algorithm used in this solution is based
on RSA and is very secure against cryptanalysis, because of the difficulty in factoring. Thus, the private key
used for asymmetric encryption cannot be broken and this has been analyzed in detail [25]. Another potential
security risk while using asymmetric key encryption is in obtaining the public key of the communicating
entities. The distributed certification authority designed in this solution ensures that the public keys can be
reliably obtained. This solution is tolerant to a maximum of £ — 1 malicious nodes.

Non-Vulnerability of cluster heads: Traditional solutions using a cluster-based approach delegate authority
to cluster heads, making them vulnerable to a single point of attack. This is because, if a single node can
control the network, capturing the node is similar to capturing the network. However, in this work, secret
key of nodes cannot be obtained by compromising the cluster head, as the secret keys of nodes are neither
created or known to the these nodes. The role of the cluster head is restricted to distributing partial keys,
and this role is transferable to any other node in the cluster. Thus, if the cluster head breaks down during
key generation, this role can be taken up by the (n — 1)** node. Another potential security risk is the leakage
of the value of the prime numbers (P and Q), in the event of a cluster head compromise since the security of
the RSA scheme depends on the security of the prime numbers. To maintain the secrecy of P and Q, they
are created at random, used during the formation of the partial keys and then destroyed.

Node compromise: If a node A is compromised, the secret key of A is known to the intruder, and a
masquerading attack can be launched. However, secret key of A cannot be used to obtain the secret keys
of other nodes in the cluster. Additionally, we assume that the compromised node can be tracked using
misbehavior tracking mechanisms [29].

A.2 Scalability

Grouping nodes into non-overlapping clusters and generating keys locally within the clusters, help in adapt-
ing the solution to large network sizes. The certification services are also provided locally, and an increase
in network size will not affect availability or connectivity to the certification authority. Also, symmetric key
encryption is restricted to intra-cluster communication, reducing the number of participating entities. This
addresses the scalability issues faced by conventional symmetric key cryptosystems.



A.3 Robustness

The solution is robust against node failures and loss of connectivity. Node failures during initialization of
keys do not affect the key generation methodology. We assume that nodes can rearrange their order (from
1 to n) in the event of an intermediate node failure before exchanging its contribution. The solution is also
not affected by the failure of the cluster head (or Node n) during key generation. The role of the cluster head
can be taken up by any node, and the previous node (n-1) can create and distribute the partial keys in the
event of cluster head failure. Node failures or compromise after key generation will not affect the working of
the security solution because there is no dependency between nodes for secure communication. Certification
services are provided by any k entities in the cluster, and thus the solution is tolerant to node failures and
loss of connectivity as long as there are enough nodes to provide the service.

A .4 Computational cost

Symmetric key cryptosystems are computationally much less expensive than asymmetric key systems. How-
ever, they are usually not deployed for ad hoc networks because a decentralized key management scheme for
exchanging symmetric keys is difficult to implement and the solution is often not scalable. By using the
hybrid scheme, we have a designed a scalable symmetric key exchange methodology for use within a cluster.
By encrypting inter-cluster communication using symmetric key encryption the computational cost of using
asymmetric system for inter-cluster communication as well is saved. It should be noted that the cost of the
hybrid approach is less than the sum of the cost of the symmetric and asymmetric approaches, when applied
individually. This is because, the partial keys used for determining both the symmetric and the asymmetric
keys are generated in a single round.

B. Simulation

In order to evaluate our concept, we have developed a simulation model of our protocol using GlomoSim [30].
The performance of the proposed approach is tested for different scenarios and is compared with traditional
solutions. The simulation model is also used to study the delay characteristics of the protocol for varying
levels of mobility and network sizes.

B.1 Simulation environment

The protocol is defined at the application-layer and we use UDP packets for message transfer. The simulation
area is 1000m X 1000m, and the number of nodes in the network vary from 30 to 100. We study the
performance of the protocol for varying speeds from 1m/s to 20m/s and the random waypoint model is used
for node mobility. We assume a standard bit error rate, as provided by GlomoSim and 802.11 protocol is used
at the MAC layer. Nodes form clusters and create and distribute keys using the contributory key generation
scheme. All nodes then request for certificates using a broadcast message, and obtain certificates from the
cluster nodes. The total simulation time is 20 minutes and certificates expire between 200 to 375s, chosen
randomly. Nodes are assumed to request for new certificates between 20 to 30 seconds after the certificate
expires. These parameters are chosen so that a reasonable number of certificate requests will be generated
during the simulation time.

The number of malicious nodes are assumed to be 1/5 of the total number of nodes and are chosen randomly
and distributed uniformly in clusters. A valid certificate can be obtained only if it is signed by k£ nodes, where
k — 1 is the number of malicious nodes in a cluster. The social factors, such as a location-limited channel,
involved in obtaining the certificates is ignored. We assume that malicious nodes do not provide certificates
and all other nodes respond to the certificate request query with a probability of 0.9.

Retransmissions and acknowledgments are built over the unreliable UDP, to provide for reliable packet
delivery.

B.2 Comparison study

The hybrid and the centralized approach are simulated and the performance is compared under similar
settings for varying mobility.
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We have determined the following metrics to study the performance of the solution: Success ratio and Delay
per certificate. Success ratio is defined as

Number of successful certificate requests / Total number of certificate requests

While the success ratio determines the effectiveness of the solution, the cost is evaluated using the delay.
Delay per certificate is defined as

Total delay for certificate generation / Number of certificates signed

For the hybrid architecture, the latency includes the key generation and distribution time, while for a central-
ized approach, the delay solely consists of the latency for certificate generation. The simulation was performed
for a network size of 50 nodes.

Success ratio vs. Node speed
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Fig. 4. Comparison of success ratio

Average delay vs. Node speed
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Fig. 5. Comparison of average delay

It can be seen from Fig. 4, that the success ratio of the hybrid approach is significantly higher than that
of the centralized approach for varying node mobility, even when four central servers are used for providing
certification services. This confirms that the centralized approach is not suitable for ad hoc networks, where
connectivity to the central server cannot be guaranteed. By clustering nodes and providing localized certi-
fication service, connectivity to the distributed CA is ensured. The hybrid approach is also robust in terms
of mobility and even at high node speeds of 20m/s, the success ratio is close to 100 % when the number of
clusters is 16.

The efficiency of our protocol is demonstrated in Fig. 5, where it can be seen that the average delay to
obtain a certificate is less than 50 seconds and the solution is robust with increasing mobility. The total delay
includes the timeouts and other overheads incurred even if a certificate request fails, but is averaged over only
the number of signed certificates. The average delay of the centralized approach is prohibitively high because
of the large timeouts and small number of successful certificate generation.
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We observe from Fig. 4 and Fig. 5, that the performance of the hybrid approach with 16 clusters is better
than that with 4 clusters. Cluster size (or the number of nodes in a cluster) is one of the important parameters
in determining the performance of our solution and is inversely proportional to the number of clusters. As
the cluster size increases, the number of nodes that can provide certification service increases, but number of
collisions also increases, that may result in loss of partial keys and certification packets. Smaller cluster size,
reduces the initialization time, but is less tolerant to malicious nodes and have lower availability. When the
number of clusters is 16 (i.e. the number of nodes in a cluster is small) the performance is better than when
it is 4, because, as the number of nodes in the cluster increases, collisions increase, and many of the partial
key distribution packets and signed certificates are dropped. We will investigate the effects of cluster size in
more detail, to determine the optimal size for the most efficient solution.

The minimum cluster size can be determined by the number of tolerable malicious nodes k — 1 in a cluster.
For the solution to be reliable and available, the number of nodes signing the certificate should at least be &
and thus the total number of nodes in a cluster (including the node requesting for the certification service)
(CS) is governed by the inequality,

CS>2k+1

The maximum cluster size is related to the storage capacity of the nodes. In this algorithm, each node
stores information about every other node in the cluster, and hence if the maximum storage capacity of a
node is M,

CS<M+1

B.3 Delay characteristics

Time vs. Percentage of nodes getting initialized
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Fig. 6. Comparing initialization time for varying number of nodes

Fig. 6 shows the performance of the hybrid scheme with respect to initialization time for varying network
sizes. The maximum node speed is set to 5§ m/s, and the number of clusters is 4. The initialization time is the
time for contributory key generation and distribution of the partial keys. The figure shows that the algorithm
scales well for large networks and the initialization process is completed within a reasonable time period. For
this particular scenario, 90 % of the nodes in the network are initialized within the first 100 seconds, while
all the nodes are initialized within the first 150 seconds. We observe that, even when the number of nodes in
the cluster is large (i.e when the number of clusters is 4), the initialization time is still small.

The delay in obtaining the first certificate represents the time taken for a new node in the network to
start secure communication. This is an important parameter because it shows the delay introduced due to
the hybrid protocol, and also gives the time at which nodes can start communicating securely. Fig. 7 shows
the graph representing the average certificate generation delay for different network size and for two different
mobility settings. The number of clusters is 4. We observe that the average delay for obtaining certificates
is less than 20 seconds and the solution scales well to large networks and is robust with respect to mobility.
It can be observed that average certification delay decreases with increase in network size. This is because of
increased availability for providing certificate services that offsets the increased delay due to key generation
and distribution.
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Average delay for certificate generation vs. Number of nodes
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Fig. 7. Comparing certificate generation delay for different node speeds

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a key management solution for use in ad hoc wireless networks. Our
approach combines principles from both asymmetric and symmetric key cryptology to develop a novel hybrid
solution for key generation and distribution. The algorithm provides a decentralized key exchange framework
for symmetric encryption and a distributed certification authority used for asymmetric systems. The proposed
methodology overcomes the limitation of purely symmetric or purely asymmetric systems and is designed to
be scalable and robust. Analysis and simulation clearly show the advantages of the solution, particularly in
terms of improved scalability, security and performance.

Current research efforts are towards determination of the optimal cluster size and the most suitable clus-
tering algorithm for our solution. Extensive evaluations will be performed to compare our solution with
other symmetric, asymmetric and cluster-based solutions. We are also investigating the applicability of this
approach for large scale sensor networks.
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