A More Practical Algorithm for Drawing Binary Trees in Linear
Area with Arbitrary Aspect Ratio*

Ashim Garg Adrian Rusut

Department of Computer Science and Engineering
University at Buffalo

Buffalo, NY 14260
{agarg, adirusu}Q@cse.buffalo.edu

Abstract

Trees are usually drawn planar, i.e. without any edge-crossings. It is important to minimize the area
of a drawing, so that it can fit within the given drawing-window. It is also important to give user some
control over the aspect ratio of the drawing, so that she can display the drawing in a drawing-window
with arbitrary width-to-height ratio. In a grid drawing, each node is assigned integer coordinates. In [6],
it was shown that any binary tree with n nodes admits a planar straight-line grid drawing with area
O(n) and with any pre-specified aspect ratio in the range [n™°,n°], where € is any constant such that
0 < € < 1. It was also shown that such a drawing can be constructed in O(nlogn) time. In particular,
this showed that optimal area (equal to O(n)) and optimal aspect ratio (equal to 1) is simultaneously
achievable for such drawings.

However, the algorithm of [6] is not suitable for practical use. The main problem is that the constant
¢ hidden in the “Oh” notation for area is quite large (for example, it can be as high as 3900).

In this paper, we make several non-trivial practical improvements to the algorithm, which make it
suitable for practical use. We have also conducted experiments on this newer version of the algorithm
for randomly-generated binary trees with up to 50,000 nodes, and for complete binary trees with up to
65,535 = 2'® — 1 nodes. Our experiments show that it constructs area-efficient drawings in practice, with
area at most 8 times the number of nodes for complete binary trees, and at most 10 times the number
of nodes for randomly-generated binary trees.

1 Introduction

Trees are very common data-structures, which are used to model information in a variety of applications.
A drawing T of a tree T maps each node of T to a distinct point in the plane, and each edge (u,v) of T
to a simple Jordan curve with endpoints v and v. T is a straight-line drawing, if each edge is drawn as a
single line-segment. I' is a grid drawing if all the nodes have integer coordinates. I' is a planar drawing, if
edges do not intersect each other in the drawing. In this paper, we concentrate on grid drawings. So, we will
assume that the plane is covered by a rectangular grid. Let R be a rectangle with sides parallel to the X-
and Y-axes. The width (height) of R is equal to the number of grid points with the same y (z) coordinate
contained within R. The area of R is equal to the number of grid points contained within R. The aspect
ratio of R is the ratio of its width and height. R is the enclosing rectangle of T, if it is the smallest rectangle
that covers the entire drawing. The width, height, area, and aspect ratio of I is equal to the width, height,
area, and aspect ratio, respectively, of its enclosing rectangle. T is a binary tree if each node has at most
two children.

*Research supported by NSF CAREER Award No. IIS-9985136, NSF CISE Research Infrastructure Award No. 0101244,
and Mark Diamond Research Grant No. 13-Summer-2003 from GSA of The State University of New York.
fCurrent Affiliation: Department of Computer Science, Rowan University, Glassboro, NJ 08028. Email: rusu@rowan.edu

2 Our Result

Planar straight-line drawings are more aesthetically pleasing than non-planar polyline drawings. Grid draw-
ings guarantee at least unit distance separation between the nodes of the tree, and the integer coordinates of
the nodes and edge-bends allow the drawings to be displayed in a display surface, such as a computer screen,
without any distortions due to truncation and rounding-off errors. Giving users control over the aspect ratio
of a drawing allows them to display the drawing in different kinds of display surfaces with different aspect
ratios. Finally, it is important to minimize the area of a drawing, so that the users can display a tree in as
small drawing area as possible.

It is therefore important to investigate the problem of constructing planar straight-line grid drawings of
binary trees with small area. Clearly, any planar grid drawing of a binary tree with n nodes requires Q(n)
area. A long-standing fundamental problem, therefore, was that whether this is a tight bound also, i.e., given
a binary tree T with n nodes, can we construct a planar straight-line grid drawing of T' with area O(n)?

[6] settled this problem by proving that a binary tree can be drawn in linear area with arbitrary aspect
ratio in the range [n™¢, nf], where € is any constant, such that 0 < € < 1, in O(nlogn) time. In particular,
this result showed that optimal area (equal to O(n)) and optimal aspect ratio (equal to 1) is simultaneously
achievable (see Corollary 1).

While the result of [6] was significant from a theoretical point of view, the drawing-algorithm presented
in [6] suffered from the following drawbacks, that made it unsuitable for practical use:

e The constant ¢ hidden in the “Oh” notation for area can be quite large (for example, it can be as
high as 3900 for ¢ = 0.6, and A = 1). One might argue that c is really a worst-case bound, and the
algorithm might perform better in practice. However, the problem is that given a tree 7' with n nodes,
and two numbers € and A as input, the algorithm will always pre-allocate a rectangle R with size
ezxactly equal to cn, and draw T within R. Thus, the area of R is always equal to the worst-case area,
and correspondingly, the drawing also has a large area. This is the major drawback of this algorithm.

e Also, it uses another algorithm, called Algorithm u*-HV-Draw, as a subroutine. This increases the
complexity of implementing the algorithm.

In this paper, we have made several practical improvements to the algorithm, which make it more suitable
for practical use: (Note that the area of the drawing constructed by this newer version of the algorithm is
still O(n))

e We have developed a newer version of the algorithm that does not require the pre-assignment of a

rectangle with the worst-case area to draw a tree. This makes it possible for the algorithm to construct
a more area-efficient drawing of a tree in practice than that by the algorithm of [6].

The main difference between this newer version and the algorithm of [6] is as follows: The algorithm
of [6] is a recursive algorithm, which, in each recursive step, splits a tree T into several small trees,
correspondingly splits its pre-assigned rectangle R into several smaller rectangles, assigns these smaller
rectangles to the smaller trees, recursively draws the smaller trees within their pre-assigned rectangles,
and then combine their drawings to obtain a drawing of 7. In this newer version, instead of pre-
assigning a rectangle, we only pre-assign an aspect ratio to each smaller tree, recursively construct a
drawing of each smaller tree using its pre-assigned aspect ratio, and then combine their drawings to
obtain a drawing of T

e This newer version does not require Algorithm u*-HV-Draw as a subroutine, which makes it easier to
implement.

e The proof for the area (see Lemma 4) given in [6] is based on a theorem by Leslie Valiant (Theorem 6
of [10]). Unfortunately, the most natural way of using the theorem seemed to be requiring the pre-
assignment of a rectangle (with a large area). Hence, developing an algorithm that does not pre-assign
a rectangle required developing a new proof. Correspondingly, we have developed a new proof that
does not use the theorem. Instead, it simply uses mathematical induction.

e We have also implemented this newer version, and experimentally evaluated its performance for
randomly-generated binary trees with up to 50,000 nodes, and for complete binary trees with up
to 65,535 = 216 — 1 nodes. Our experiments show that it constructs area-efficient drawings in practice,
with area at most at most 8 times the number of nodes for complete binary trees, and at most 10 times

the number of nodes for randomly-generated binary trees.

3 Previous Results

Previous to the result of [6], the best-known upper bound on the area of a planar straight-line grid drawing
of an n-node binary tree was O(nloglogn), which was shown in [1] and [8].

However, note that the O(nloglogn) area drawing constructed by the algorithms of [1] and [8] has a
fixed aspect ratio, equal to #(log” n/(nloglogn)), whereas the aspect ratio of the drawing constructed by
our algorithm can be specified by the user.

We now summarize some other known results on planar grid drawings of binary trees (for more results,
see [4]). Let T be an n-node binary tree. [5] presents an algorithm for constructing an upward polyline
drawing of T with O(n) area, and any user-specified aspect ratio in the range [n~¢,n¢], where € is any
constant, such that 0 < e < 1. [7] and [10] present algorithms for constructing a (non-upward) orthogonal
polyline drawing of T' with O(n) area. [1] gives an algorithm for constructing an upward orthogonal straight-
line drawing of T' with O(nlogn) area, and any user-specified aspect ratio in the range [log n/n,n/logn]. It
also shows that nlogn is also a tight bound for such drawings. [8] gives an algorithm for constructing an
upward straight-line drawing of T' with O(nloglogn) area. If T is a Fibonacci tree, (AVL tree, complete
binary tree), then [2, 9] ([3], [2], respectively) give algorithms for constructing an upward straight-line drawing
of T with O(n) area.

Table 1 summarizes these results.

| Tree Type | Drawing Type | Area | Aspect Ratio | Reference
Fibonacci Upward Straight-line O(n) 6(1) 12, 9]
AVL Upward Straight-line O(n) 6(1) 3
Complete Binary Upward Straight-line O(n) 6(1) 2
General Binary Upward Orthogonal
Polyline O(nloglogn) | 8(log®n/(nloglogn)) [5, 8]
(Non-upward) Orthogonal
Polyline O(n) 6(1) (7, 10]
Upward Orthogonal
Straight-line O(nlogn) [logn/n,n/logn) 1
Upward Polyline O(n) [n~¢,nf 5
Upward Straight-line O(nloglogn) | 8(log” n/(nloglogn)) (8]
(Non-upward) Straight-line | O(nloglogn) | 8(log”n/(nloglogn)) 1]
O(n) [n~¢,nf (6] and this paper

Table 1: Bounds on the areas and aspect ratios of various kinds of planar grid drawings of an n-node binary
tree. Here, € is an arbitrary constant, such that 0 < e < 1.

4 Preliminaries

Throughout the paper, by the term tree, we will mean a rooted tree, i.e., a tree with a given root. We will
assume that the plane is covered by an infinite rectangular grid. A horizontal channel (vertical channel) is
a line parallel to the X-(Y-)axis, passing through grid-points.

Let T be a tree with root o. Let n be the number of nodes in 7. T is an ordered tree if the children of
each node are assigned a left-to-right order. A partial tree of T is a connected subgraph of T. If T is an
ordered tree, then the leftmost path p of T is the maximal path consisting of nodes that are leftmost children,
except the first one, which is the root of 7. The last node of p is called the leftmost node of T. Two nodes
of T are stblings if they have the same parent. The subtree of T rooted at a node v consists of v and all the
descendents of v. T is the empty tree, i.e., T = 0, if it has zero nodes in it.

Let T be a drawing of T'. By the bottom (top, left, and right, respectively) boundary of T', we will mean
the bottom (top, left, and right, respectively) boundary of the enclosing rectangle R(I") of I'. Similarly, by
top-left (top-right, bottom-left, and bottom-right, respectively) corner of I', we mean the top-left (top-right,
bottom-left, and bottom-right, respectively) corner of R(T').

Let R be a rectangle, such that I' is entirely contained within R. R has a good aspect ratio, if its aspect
ratio is in the range [n~ ¢, n¢], where 0 < € < 1 is a constant.

Let w be a node of an ordered tree. We denote by p(w), I(w), r(w), and s(w), respectively, the parent,
left child, right child, and sibling of w.

For some trees, we will designate a special link node u*, that has at most one child. As we will see later
in Section 5, the link node helps in combining the drawing of a tree with the drawing of another tree to
obtain a drawing of a larger tree, that contains both the trees.

Let T be a tree with link node u*. Let o be the root of T'. A planar straight-line grid drawing I" of T is
a feasible drawing of T, if it has the following three properties:

e Property 1: The root o is placed at the top-left corner of T".

e Property 2: If u* # o, then u* is placed at the bottom boundary of I'. Moreover, we can move u*
downwards in its vertical channel by any distance without causing any edge-crossings in I'.

e Property 3: If u* = o, then no other node or edge of T is placed on, or crosses the vertical and
horizontal channels occupied by 0. Moreover, we can move u* (i.e., 0) upwards in its vertical channel
by any distance without causing any edge-crossings in I'.

The following Theorem paraphrases a theorem of Valiant [10]:

Theorem 1 (Separator Theorem [10]) Every binary tree T with n nodes, where n > 2, contains an edge
e, called a separator edge, such that removing e from T splits it into two non-empty trees with ny and ns
nodes, respectively, such that for some z, where 1/3 < z < 2/3, ny = zn, and ny = (1 — z)n. Moreover, e
can be found in O(n) time.

Let I" be a drawing of T'. Let v be a node of T located at grid point (i,7) in I'. Assume that the root o
of T is located at the grid point (0,0) in I'. We define the following operations on I' (see Figure 1):

e rotate operation: rotate I' counterclockwise by & degrees around o. After a rotation by § degrees of T,
node v will get relocated to the point (icosd — jsind,isind + jcosd). In particular, after rotating I'
by 90°, node v will get relocated to the grid point (—j,1).

e flip operation: flip I" vertically or horizontally about the X — or Y —axis, respectively. After a horizontal
flip of T, node v will be located at grid point (—%, 7). After a vertical flip of T', node v will be located
at grid point (%, —j).
Suppose I' were a feasible drawing, where the link node u* was placed at the bottom of I". On applying a
rotation operation followed by a vertical-flip operation, u* will get relocated to the right-boundary of I', but
o will continue to stay at the top-left corner (see Figure 1). We will use this fact later in Section 5 in the
Compose Drawings step of our drawing algorithm.

5 Our Tree Drawing Algorithm

Let T be a binary tree with link node u*. Let n be the number of nodes in T'. Let A and € be two numbers,
where € is a constant, such that 0 < e < 1, and n~ ¢ < A < n€. A is called the desirable aspect ratio for T'.

Our tree drawing algorithm, called DrawTree, takes €, A, and T as input, and uses a simple divide-and-
conquer strategy to recursively construct a feasible drawing I' of 7', by performing the following actions at
each recursive step:

e Split Tree: Split T into at most five partial trees by removing at most two nodes and their incident
edges from it. Each partial tree has at most (2/3)n nodes. Based on the arrangement of these partial
trees within 7', we get two cases, which are shown in Figures 3 and 4, respectively, and described later
in Section 5.1.

e Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ay to each partial tree Ty. The
value of Ay is based on the value of A and the number of nodes in T}.

u'k
r
1) rotate flip 0

5 ;
by 90° vertically .
= r
u

Figure 1: Rotating a drawing I' by 90°, followed by flipping it vertically. Note that initially node ©* was located
at the bottom boundary of I', but after the rotate operation, u* is at the right boundary of I.

e Draw Partial Trees: Recursively construct a feasible drawing of each partial tree Ty with A as its
desirable aspect ratio.

e Compose Drawings: Arrange the drawings of the partial trees, and draw the nodes and edges, that
were removed from T to split it, such that the drawing I" of T is a feasible drawing. Note that the
arrangement of these drawings is done based on the cases shown in Figures 3 and 4. In each case, if
A < 1, then the drawings of the partial trees are stacked one above the other, and if A > 1, then they
are placed side-by-side.

Remark: The drawing I" constructed by the algorithm may not have aspect ratio exactly equal to A, but
as we will prove later in Lemma 4, it will fit inside a rectangle with area O(n) and aspect ratio A.

- I

Figure 2: Drawing of the complete binary tree with 63 nodes constructed by Algorithm DrawTree, with A =1
and € = 0.5.

Figure 2 shows a drawing of a complete binary tree with 63 nodes constructed by Algorithm DrawTree,
with A =1 and ¢ = 0.5.

We now give the details of each action performed by Algorithm DrawTree:
5.1 Split Tree

The splitting of tree T into partial trees is done as follows:

e Order the children of each node such that u* becomes the leftmost node of T'.

e Using Theorem 1, find a separator edge (u,v) of T, where u is the parent of v.

e Based on whether, or not, (u,v) is in the leftmost path of T', we get two cases:

— Case 1: The separator edge (u,v) is not in the leftmost path of T. Let o be the root of T. Let a

Figure 3: Drawing T in all the seven subcases of Case 1 (where the separator edge (u,v) is not in the leftmost
path of T'): (a) Ta # 0, Tc # 0, u* #l(a), (b) Ta #0, Tc # 0, u* =1(a), (c) Ta #0, Tc = 0, o # p(a),
(d)Ta#0, Tc =0, 0=p(a), () Ta=0,Tc =0, (f) Ta =0, Tc # 0, u* # I(a), and (g) Ta = 0, Tc # 0,
u* = l(a). For each subcase, we first show the structure of T' for that subcase, then its drawing when A < 1,
and then its drawing when A > 1. In Subcases (a) and (b), for simplicity, p(a) is shown to be in the interior of
T4, but actually, either it is the same as o, or if A <1 (A > 1), then it is placed at the bottom (right) boundary
of I' 4. For simplicity, we have shown I" 4, I'g, and I'¢ as identically sized boxes, but in actuality, they may have
different sizes.

Figure 4: Drawing T in all the eight subcases of Case 2 (where the separator edge (u,v) is in the leftmost path
OfT)Z (a)TA;é(Z), TB#@,U%U*, (b)TA#@, TB#Q,WZU*, (C)TA750, TB:Q),U;AU*, (d)TA;é@,
Tg=0,v=u* () Ta=0,Teg #0, v#u*, () Ta=0,Teg #0,v=u*, (g Ta =0, Tg =0, v # u*,
and (h) Ta =0, Tg = 0, v = u*. For each subcase, we first show the structure of T" for that subcase, then its
drawing when A < 1, and then its drawing when A > 1. In Subcases (a), (b), (c), and (d), for simplicity, p(u)
is shown to be in the interior of I'4, but actually, either it is same as o, or if A <1 (A > 1), then it is placed
at the bottom (right) boundary of T"4. For simplicity, we have shown T'4, I'g, and I'¢ as identically sized boxes,
but in actuality, they may have different sizes.

be the last node common to the path o ~» v, and the leftmost path of 7. We define partial trees
Ta, Tg, Tc, Ta, T, T1 and Ts, as follows (see Figure 3(a)):
* If 0o # a, then Ty is the maximal partial tree with root o, that contains p(a), but does not
contain a. If 0 = a, then T4 = 0.
* Tp is the subtree rooted at r(a).
* If u* # a, then T is the subtree rooted at I(a). If u* = a, then T = 0.
* If s(v) exists, i.e., if v has a sibling, then T} is the subtree rooted at s(v). If v does not have
a sibling, then T7 = (.
x Ty is the subtree rooted at v.
*x If u # a, then T, is the subtree rooted at u. If uw = a, then T, = T5. Note that T, is a
subtree of Tz.
* If u # a and u # r(a), then T is the maximal partial tree with root r(a), that contains p(u),
but does not contain u. If u = a or u = r(a), then Ty = (). Again, note that T belongs to
Ts.
We get seven subcases, where subcase (a) is the general case, and subcases (b—g) are special cases:
() Ta #0, Tc # 0, u* # l(a) (see Figure 3(a)), (b) Ta # 0, Tc # 0, u* = I(a) (see Figure 3(b)),
(c) Ta # 0, To = 0, o # p(a) (see Figure 3(c)), (d) Ta # 0, Tc = 0, 0 = p(a) (see Figure 3(d)),
(e) Ta =0, Tc = 0 (see Figure 3(e)), (f) Ta = 0, Tc # 0, u* # l(a) (see Figure 3(f)), and (g)
Ta=0,Tc #0, u* =1(a) (see Figure 3(g)).
The reason we get these seven subcases is as follows: T has at least n/3 nodes in it because of
Theorem 1. Hence Ty # 0, and so, T # 0. Based on whether T4 = () or not, Tc = 0 or not,
u* = I(a) or not, and o = p(a) or not, we get a total of sixteen cases. From these sixteen cases,
we obtain the above seven subcases, by grouping some of them together. For example, the cases
Ta 7é 07 Tc 7é Q), u* 7é l(a')7 0= p(a’)7 and T 7é 07 Tc 7é wa u* 7é l(a)7 Y 7é p(a) are grouped
together to give Case (a), i.e., Ta # 0, Tc # 0, u* # l(a). So, Case (a) corresponds to 2 cases.
Similarly, Cases (b), (c), (d), (f), and (g) correspond to 2 cases each, and Case (e) corresponds to
4 cases.
In each case, we remove nodes a and u (which could be the same node as a), and their incident
edges, to split T into at most five partial trees Ty, T¢, T, T1, and To. We also designate p(a) as
the link node of T4, p(u) as the link node of T3, and u* as the link node of T. We arbitrarily
select a node of T; that has at most one child (for example, we can select a leaf), and designate it
as the link node of T;. We arbitrarily select a node of T, that has at most one child (for example,
we can select a leaf), and designate it as the link node of T5.

Case 2: The separator edge (u,v) is in the leftmost path of T. Let o be the root of 7. We can
define partial trees T4, Tg, and T¢ as follows (see Figure 4(a)):
* If 0 # u, then T4 is the maximal partial tree with root o, that contains p(u), but does not
contain u. If 0 = u, then T4 = 0.
* If r(u) exits, i.e., u has a right child, then T is the subtree rooted at r(u). If u does not
have a right child, then Ty = 0.
x T¢ is the subtree rooted at v.

We get eight subcases, where subcase (a) is the general case, and subcases (b-h) are special cases:
(@) Ta # 0, Tg # 0, v # u* (see Figure 4(a)), (b) Ta # 0, Tg # 0, v = u* (see Figure 4(b)),
() Ta #0, Tg = 0, v # u* (see Figure 4(c)), (d) Ta # 0, Tg = 0, v = u* (see Figure 4(d)),
() Ta =0, Tg # 0, v # u* (see Figure 4(e)), (f) Ta =0, Ts # 0, v = u* (see Figure 4(f)), (g)
Ty=0,Tg =0, v+#u* (see Figure 4(g)), and (h) Ty =0, Ts = 0, v = u* (see Figure 4(h)).
The reason we get these eight subcases is as follows: T¢ has at least n/3 nodes in it because of
Theorem 1. Hence, T # (). Based on whether T4 = (§ or not, Ts =) or not, and v = u* or not,
we get the eight subcases given above.

In each case, we remove node u, and its incident edges, to split 1" into at most three partial trees
T4, Tg, and Tc. We also designate p(u) as the link node of T4, and u* as the link node of T¢.
We arbitrarily select a node of T that has at most one child (for example, we can select a leaf),
and designate it as the link node of T’z.

Remark: In Case 2, from the definition of the separator edge (u,v) (see Theorem 1), it can be easily
shown that Ty =) and T = 0 can happen simultaneously only if T has very few nodes in it, namely, at
most 5 nodes. Hence, Case 2(g) and Case 2(h) can occur only if T has at most 5 nodes in it.

5.2 Assign Aspect Ratios

Let Ty be a partial tree of T, where for Case 1, T}, is either T, T¢, Tg, 11, or 1>, and for Case 2, T} is
either Ty, T, or To. Let ng be number of nodes in T}.
Definition: T} is a large partial tree of T if:

e A>1and ng > (n/A)Y(+e) or
e A <1andng > (An)Y/0+e),

and is a small partial tree of T' otherwise.

In Step Assign Aspect Ratios, we assign a desirable aspect ratio Ay to each non-empty T} as follows: Let
Tp = ng/n.

o If A>1: If T} is a large partial tree of T, then Ay = z A, otherwise (i.e., if T} is a small partial tree

of T) Ak = n,:e.
o If A <1: If Ty is a large partial tree of T, then Ay, = A/zy, otherwise (i.e., if T} is a small partial tree
of T) Ax = nj.

Intuitively, the above assignment strategy ensures that each partial tree gets a good desirable aspect
ratio.

5.3 Draw Partial Trees

First, we change the values of A4 and Ag in some situations, as follows: (recall that A4 and Ag are the
desirable aspect ratios for T4 and Tp, respectively, when they are non-empty trees)

e In Case 1(c), we change the value of A4 to 1/A4. Moreover, in Case 1(c), if A > 1, then we change
the value of Ag also to 1/Ag.

e In Cases 1(a) and 1(b), if A > 1, then we change the values of A4 and Ag to 1/A4 and 1/Ag,
respectively.

¢ In Cases 1(d), 1(e), 1(f), and 1(g), if A > 1, then we change the values of Ag to 1/Ag.
e In Cases 2(a), 2(b), 2(c), and 2(d), if A > 1, then we change the value of A4 to 1/A4.
(This is done so because later in Step Compose Drawings, when constructing T',
e in Case 1(c), the drawing of T4 is rotated by 90°, and if A > 1, then the drawing of T is also rotated
by 90°,
¢ in Cases 1(a) and 1(b), if A > 1, then the drawings of T4 and Ty are rotated by 90°,
e in Cases 1(d), 1(e), 1(f), and 1(g), if A > 1, then the drawing of T} is rotated by 90°, and
e in Cases 2(a), 2(b), 2(c), and 2(d), if A > 1, then the drawing of T4 is rotated by 90°.

Drawing T4 and Tp with desirable aspect ratios 1/A4 and 1/Ag, respectively, compensates for the rotation,
and ensures that the drawings of T4 and T that eventually get placed within I' are those with desirable
aspect ratios A4 and Ag, respectively.)

Next, we draw recursively each non-empty partial tree T with Ay as its desirable aspect ratio. The base
case for the recursion happens when T}, contains exactly one node, in which case, the drawing of T} is simply
the one consisting of exactly one node.

5.4 Compose Drawings

Let I'y, denote the drawing of a partial tree T} constructed in Step Draw Partial Trees. We now describe
the construction of a feasible drawing I' of T from the drawings of its partial trees in both Cases 1 and 2.

In Case 1, we first construct a drawing I', of the partial tree T, by composing I'; and I'; as shown in
Figure 5, then construct a drawing I'p of T by composing I'y, and I'g as shown in Figure 6, and finally
construct I' by composing I' 4, I'p and I'c as shown in Figure 3.

Ty is constructed as follows (see Figure 5): (Recall that if u # a then Ty, is the subtree of T rooted at u,
otherwise T, = T5)

—
=3
~

.
Ry
|N:r

()

Figure 5: Drawing T,, when: (a) u # a and T1 # 0, (b) u # a and T; = (), and (c) u = a. For each case, we
first show the structure of T, for that case, then its drawing when A < 1, and then its drawing when A > 1. For
simplicity, we have shown I'y and I'; as identically sized boxes, but in actuality, their sizes may be different.

e If u # a and T} # 0 (see Figure 5(a)), then:
— If A < 1, then place I'; above I's such that the left boundary of I'; is one unit to the right of the
left boundary of I';. Place u in the same vertical channel as v and in the same horizontal channel
as s(v).
— If A > 1, then place I'; one unit to the left of I'y, such that the top boundary of I'; is one unit
below the top boundary of I's. Place u in the same vertical channel as s(v) and in the same
horizontal channel as v.

Draw edges (u, s(v)) and (u,v).
e If u # a and Ty = () (see Figure 5(b)), then:
— If A <1, then place u one unit to the left of I's in the same horizontal channel as v.
— If A > 1, then place u one unit above I's in the same vertical channel as v.
Draw edge (u, v).
e If u = a, then T', is the same as I'y (see Figure 5(c)).
I'p is constructed as follows (see Figure 6):
o If T # 0 (see Figure 6(a)) then:
— if A < 1, then place I'g one unit above I'y, such that the left boundaries of I'g and I',, are aligned.

— If A> 1, then first rotate I's by 90° and then flip it vertically, then place I'3 one unit to the left
of ', such that the top boundaries of I'3 and I', are aligned.

Draw edge (p(u), u).
e If Ts = (), then ' is same as I, (see Figure 6(b)).
T is constructed from I'4, I'p, and T'¢ as follows (see Figure 3):
e In Subcase (a), I' is constructed as shown in Figure 3(a):

— If A < 1, stack T' 4, I'g, and I'c one above the other, such that they are separated by unit distance
from each other, and the left boundaries of I 4 and I'¢ are aligned with each other and are placed
one unit to the left of the left boundary of I's. Place a in the same vertical channel as o and I(a),
and in the same horizontal channel as r(a).

10

by ()
/TN® Yr,)
n p(u)
2 u I, r Bo’ I,
)

r(a)

r(a) r(a)

Figure 6: Drawing T when: (a) T # 0, and (b) T = 0. For each case, we first show the structure of Ts
for that case, then its drawing when A < 1, and then its drawing when A > 1. In Case (a), for simplicity, p(u) is
shown to be in the interior of I'g, but actually, it is either same as r(a), or if A < 1 (A > 1), then is placed on
the bottom (right) boundary of I'z. For simplicity, we have shown I's and T', as identically sized boxes, but in
actuality, their sizes may be different.

— If A > 1, then first rotate I' 4 by 90°, and then flip it vertically. Then, place I'4, I'¢, and I'g from
left-to-right in that order, separated by unit distances, such that the top boundaries of 'y and
I'p are aligned with each other, and are one unit above the top boundary of I'c. Then, move I'c
down until u* becomes the lowest node of I'. Place a in the same vertical channel as I(a) and in
the same horizontal channel as o and 7(a).

Draw edges (p(a),a), (a,7(a)), and (a,l(a)).

e The drawing procedure for Subcase (b) is similar to the one in Subcase (a), except that we also flip
I'c vertically (see Figure 3(b)).

e In Subcase (c), I is constructed as shown in Figure 3(c):

— If A < 1, then first flip I'g vertically, and then flip it horizontally, so that its root 7(a) gets placed
at its lower-right corner. Then, first rotate I'y by 90°, and then flip it vertically. Next, place
I'4 above I'p at unit distance, such that their left boundaries are aligned. Next move node p(a)
(which is the link node of T4) to the right until it is either to the right of, or aligned with the
right boundary of T'p (since I'4 is a feasible drawing of T4, by Property 2, as given in Section 4,
moving p(a) in this manner will not create any edge-crossings). Place u* in the same horizontal
channel as r(a) and one unit to the right of p(a).

— If A > 1, then first rotate I' 4 by 90°, and then flip it vertically. Flip I'g vertically. Then, place I 4,
u*, and I'g left-to-right in that order separated by unit distances, such that the top boundaries of
I'4 and I'p are aligned, and u* is placed in the same horizontal channel as the bottom boundary
of the drawing among I' 4 and I'p with greater height.

Draw edges (p(a),a) and (a,r(a)) (i-e., the edges (p(a), u*) and (u*,r(a)) because in this case, u* = a).
e In Subcase (d), I' is constructed as shown in Figure 3(d):

— If A < 1, then first flip ' vertically, then place I" 4 one unit above I'g, such that the left boundary
of T4 is one unit to the left of the left boundary of I'g. Place u* in the same vertical channel as
o and in the same horizontal channel as 7(a).

— If A > 1, then first flip I'p vertically, then place I'4 one unit to the left of I'g, such that their
top boundaries are aligned. Next, move I'g down until its bottom boundary is at least one unit
below the bottom boundary of I'4. Place u* in the same vertical channel as o and in the same
horizontal channel as r(a).

Draw edges (o0,u*) and (u*,r(a)) (i.e., the edges (p(a),a) and (a,r(a)) because in this case, o = p(a)

11

and u* = a). Note that, since T'4 is a feasible drawing of T4, from Property 3 (see Section 4), drawing
(0,u*) will not create any edge-crossings.

e In Subcase (e), for both A < 1 and A > 1, place node o one unit above and one unit left of I'p (see
Figure 3(e)). Draw edge (a,7(a)) (i.e., the edge (0,7(0)) because in this case, a = o).

e The drawing procedure in Subcase (f) is similar to the one in Subcase (a), except that we do not have
T'4 here (see Figure 3(f)).

e The drawing procedure in Subcase (g) is similar to the one in Subcase (f), except that we also flip I'c
vertically (see Figure 3(g)).

In Case 2, we construct I' by composing I'4, I', and I'¢, as follows (see Figure 4):

e The drawing procedures in Subcases (a) and (e) are similar to those in Subcases (a) and (f), respectively,
of Case 1 (see Figures 4(a,e)).

e In Subcase (c), I is constructed as shown in Figure 4(c):

— If A > 1, we place I" 4 one unit above ', such that the left boundary of I'¢ is one unit to the right
of the left boundary of I'4. Place u in the same vertical channel as o and in the same horizontal
channel as v.

— If A > 1, then first rotate I'4 by 90°, and then flip it vertically. Then, place I'4 one unit to the
left of ', such that the top boundary of I'¢ is one unit below the top boundary of I'4. Then,
move I'c down until u* becomes the lowest node of I'. Place u in the same vertical channel as v
and in the same horizontal channel as o.

Draw edges (p(u), u), and (u,v).
e The drawing procedure (see Figure 4(g)) in Subcase (g) is similar to that in Case (b) of drawing T,
(see Figure 5(b)).

e The drawing procedures in Subcases (b), (d), (f), and (h) are similar to those in Subcases (a), (c), (e),
and (g), respectively (see Figures 4(b,d,f,h)), except that we also flip I'c vertically.

5.5 Proof of Correctness

Lemma 1 (Planarity) Given a binary tree T with a link node u*, Algorithm DrawTree will construct a
feasible drawing T’ of T'.

Proof: We can easily prove using induction over the number of nodes n in T that I is a feasible drawing;:
Base Case (n =1): T consists of exactly one node and is trivially a feasible drawing.

Induction (n > 1): Consider Case 1. By the inductive hypothesis, the drawing constructed of each partial
tree of T is a feasible drawing.

From Figure 5, it can be easily seen that in both the cases, A < 1 and A > 1, T',, is a planar drawing,
and the root of T, is placed at its top-left corner.

From Figure 6, it can be easily seen that in both the cases, A < 1 and A > 1, 7(a) is placed at the top-left
corner of I'g. Note that because I'g is a feasible drawing of Tz and p(u) is its link node, p(u) is either at the
bottom of I'g (from Property 2, see Section 4), or at the top-left corner of I'g and no other edge or node of
Tp is placed on, or crosses the vertical channel occupied by it (Properties 1 and 3, see Section 4). Hence, in
Figure 6(a), in the case A < 1, drawing edge (p(u), w) will not cause any edge crossings. Also, in Figure 6(a),
in the case A > 1, drawing edge (p(u),u) will not cause any edge crossings because after rotating I'g by
90° and flipping it vertically, p(u) will either be at the right boundary of I'g (because of Property 2), or at
the top-left corner of I's and no other edge or node of T will be placed on, or cross the horizontal channel
occupied by it (because of Properties 1 and 3). It therefore follows that in both the cases, A < 1and A > 1,
I'p will be a planar drawing.

Finally, by considering each of the seven subcases shown in Figure 3 one-by-one, we can show that I is
a feasible drawing of T

o Subcase (a): See Figure 3(a). I'4 is a feasible drawing of T4, and p(a) is the link node of T4. Hence,

p(a) is either at the bottom of I'4 (from Property 2), or is at the top-left corner of I'4, and no other
edge or node of T4 is placed on, or crosses the horizontal and vertical channels occupied by it (from
Properties 1 and 3). Hence, in the case A < 1, drawing edge (p(a),a) will not create any edge-

12

crossings. In the case A > 1 also, drawing edge (p(a),a) will not create any edge-crossings because
after rotating I'4 by 90° and flipping it vertically, p(a) will either be at the right boundary of I'4
(because of Property 2), or at the top-left corner of I'g and no other edge or node of T4 will be placed
on, or cross the horizontal channel occupied by it (because of Properties 1 and 3).

Nodes r(a) and I(a) are placed at the top-left corner of I'g and I'c, respectively. Hence, drawing edges
(a,7(a)) and (a,l(a)) will not create any edge-crossings in both the cases, A <1 and A > 1.

In both the cases, A < 1 and A > 1, o gets placed at the top-left corner of I'. Hence, I' satisfies
Property 1.

Since u* # o, Property 3 is satisfied by I vacuously.

We now show that Property 2 is satisfied by I'. In both the cases, A < 1 and A > 1, u* gets placed
at the bottom of I'. T'¢ is a feasible drawing, [(a) is the root of T, and u* # Il(a). Hence, from
Property 2, we can move u* downwards in its vertical channel by any distance without causing any
edge-crossings in I'c. Hence, in I' also, we can move u* downwards in its vertical channel by any
distance without causing any edge-crossings in I'. Thus, Property 2 is satisfied by T.

We therefore conclude that in both the cases, A <1 and A > 1, T is a feasible drawing of T'.

Subcase (b): See Figure 3(b). The proof is similar to the one for Subcase (a), except that in this case,
because u* = l(a), we use the fact that I'c satisfies Property 3 to prove that I' satisfies Property 2. To
elaborate, since u* = [l(a), l(a) is the root of I'c, and I'¢ is a feasible drawing, from Property 3, we
can move u* upwards in its vertical channel by any distance without causing any edge-crossings in I'c.
We flip I'¢ vertically before placing it in I". Hence, it follows that in I', we can move u* downwards in
its vertical channel by any distance without causing any edge-crossings in I'.

Subcase (c): See Figure 3(c). I'4 is a feasible drawing of T4, p(a) is the link node of T4, and p(a) # o.
Hence, from Property 2, p(a) is located at the bottom of I'4. Rotating I'4y by 90° and flipping it
vertically will move p(a) to the right boundary of I' 4. Moving p(a) to the right until it is either to
the right of, or aligned with the right boundary of I'p will not cause any edge-crossings because of
Property 2. It can be easily seen that in both the cases, A < 1 and A > 1, drawing edges (p(a), u*)
and (u*,r(a)) will not create any edge-crossings, and I" will be a feasible drawing of T'.

Subcase (d): See Figure 3(d). T'4 is a feasible drawing of T4, p(a) is the link node of T4, and p(a) = o.
Hence, from Properties 1 and 3, p(a) is at the top-left corner of I'4, and no other edge or node of Ty
is placed on, or crosses the horizontal and vertical channels occupied by it. Hence, in both the cases,
A <1and A > 1, drawing edge (p(a),u*) will not create any edge-crossings, and I' will be a feasible
drawing of T'.

Subcase (e): See Figure 3(e). Because r(a) is placed at the top-left corner of I' g, drawing edge (a,r(a))
will not cause any edge-crossings in both the cases, A < 1 and A > 1. It can be easily seen that I is a
feasible drawing of T' in both the cases when A <1 and A > 1.

Subcase (f): See Figure 3(f). It is straightforward to see that I is a feasible drawing of T' in both the
cases, A< 1and A > 1.

Subcase (g): See Figure 3(g). I'¢ is a feasible drawing of T, u* is the link node of T, and u* is also
the root of T. Hence, from Properties 1 and 3, u* is at the top-left corner of I'¢, and no other edge
or node of T¢ is placed on, or crosses the horizontal and vertical channels occupied by it. Flipping
I'c vertically will move u* to the bottom-left corner of I'c and no other edge or node of T will be on
or crosses the vertical channel occupied by it. Hence, drawing edge (0,u*) will not create any edge-
crossings. From Property 3, we can move u* upwards in its vertical channel by any distance without
causing any edge-crossings in I'c. We flip I'¢ vertically before placing it in I'. Hence, in I", we can
move u* downwards in its vertical channel by any distance without causing any edge-crossings in I'. It
therefore follows that I' is a feasible drawing of T'.

*

Using a similar reasoning, we can show that in Case 2 also, I is a feasible drawing of 7. |

Lemma 2 (Time) Given an n-node binary tree T with a link node u*, Algorithm DrawTree will construct
a drawing T of T in O(nlogn) time.

Proof: From Theorem 1, each partial tree into which Algorithm DrawTree would split 7' will have at most
(2/3)n nodes in it. Hence, it follows that the depth of the recursion for Algorithm DrawTree is O(logn).

13

At the first recursive level, the algorithm will split 7" into partial trees, assign aspect ratios to the partial
trees and compose the drawings of the partial trees to construct a drawing of T'. At the next recursive level,
it will split all of these partial trees into smaller partial trees, assign aspect ratios to these smaller partial
trees, and compose the drawings of these smaller partial trees to construct the drawings of all the partial
trees. This process will continue until the bottommost recursive level is reached. At each recursive level, the
algorithm takes O(m) time to split a tree with m nodes into partial trees, assign aspect ratios to the partial
trees, and compose the drawings of partial trees to construct a drawing of the tree. At each recursive level,
the total number of nodes in all the trees that the algorithm considers for drawing is at most n. Hence, at
each recursive level, the algorithm totally spends O(n) time. Hence, the running time of the algorithm is
O(n) - O(logn) = O(nlogn). O

Lemma 3 Let R be a rectangle with area D and aspect ratio A. Let W and H be the width and height,
respectively, of R. Then, W =+ AD and H = 1/D/A.

Proof: By the definition of aspect ratio, A= W/H. D = WH = W(W/A) = W?/A. Hence, W = v AD.
H=W/A=+AD/A=./D/A. m|
Lemma 4 (Area) Let T be a binary tree with a link node u*. Let n be the number of nodes in T. Let €
and A be two numbers such that 0 < € < 1, and A is in the range [n"¢,nf]. Given T, €, and A as input,
Algorithm DrawTree will construct a drawing T' of T that can fit inside a rectangle R with O(n) area and
aspect ratio A.

Proof: Let D(n) be the area of R. We will prove, using induction over n, that D(n) = O(n). More
specifically, we will prove that D(n) < ¢in — con® for all n > ng, where ng,ci,co, 3 are some positive
constants and 8 < 1.

We now give the proof for the case when A > 1 (the proof for the case A < 1 is symmetrical). Algorithm
DrawTree will split T into at most 5 partial trees. Let T be a non-empty partial tree of T, where T}, is one
of Ta,1p,T1,T>,T¢c in Case 1, and is one of T4, Tg,T¢c in Case 2. Let n; be the number of nodes in Ty,
and let zx = ng/n. Let P, = cin — cznﬂ/x,lc_ﬂ. From Theorem 1, it follows that ng < (2/3)n, and hence,
zr < 2/3. Hence, Py < c1n — con®/(2/3)17P = e1n — canP(3/2)1#. Let P’ = cin — c2nP(3/2)17P. Thus,
P, < P.

From the inductive hypothesis, Algorithm DrawTree will construct a drawing I'y of T} that can fit
inside a rectangle Rj with aspect ratio Ay and area D(ny), where A is as defined in Section 5.2, and
D(ng) < ey, — chg' Since zx = ng/n, D(nk) < cimy — C2n/,: = c1zpn —c2(zkn)? = 2 (cin — chﬁ/x}c_ﬂ) =
TP < zp P

Let Wy and Hj be the width and height, respectively, of R;. We now compute the values of Wy and Hy,
in terms of A, P’, z, n, and e. We have two cases:

e Ty is a small partial tree of T: Then, ny < (n/A)Y/(+¢) and also, as explained in Section 5.2,
Ay, = 1/nf. From Lemma 3, we have that Wy, = \/AD(ng) < /(1/ng)(zkP’) = \/(1/nE) (ne/n) P’ =
\/ny P'/n. Since ng < (n/A)Y(F9) it follows that Wi < +/(n/A)A-9/0+9pP//n =
V(1/AQ-e)/A+)) P! /p2e/(1+e) < /P’ /n2¢/(1+€) since A > 1.
From Lemma 3, Hy = /D(ny)/Ax < /zeP'/(1/ng) = /(nk/n)P'ng = 1/ny™“P'/n. Since ni <
(n/A)/ 0+, Hy < /(] AT TP [= /([A) P’ = \/P/A.
e Ty is a large partial tree of T: Then, as explained in Section 5.2, Ay = zxA. From Lemma 3,
Wi = \/ArD(ng) <z Azi P! = /AP
From Lemma 3, Hy, = v/D(n)/Ax < /z1P'/(z1A) = /P’ /A.
In Step Compose Drawings, we use at most two additional horizontal channels and at most one additional
vertical channel while combining the drawings of the partial trees to construct a drawing I" of T'. For example,
in Case 1(e), if u # a and T} =), then we use one additional horizontal channel and one additional vertical

channel for placing a (see Figure 3(e)), and one additional horizontal channel for placing u (see Figure 5(b)).
Hence, T can fit inside a rectangle R’ with width W’ and height H’, respectively, where,

H < max {Hp}+2 < +/P'/A+2,

~ Ty is a partial tree of T

14

and

w'o< > Wi + > Wi +1
Ty is a large partial tree Ty is a small partial tree
< Y wAP+) el 11
Ty is a large partial tree Ty is a small partial tree
< VAP 454/ P [n2e/(0+e) 41

(because D7 ;s 4 targe partial tree Tk < 1, and T has at most 5 partial trees).
R’ might not have aspect ratio equal to A, but it is contained within a rectangle R with aspect ratio A,
area D(n), width W, and height H, where

W = VAP + 54/ P'/n2c/(1F€) 41 4+ 24,

H = \/P'JA+2+ (5/A)/P' [n2</(1+9) 1 1/A

Hence, D(n) = WH = (VAP + 5v/P'Jn2/(+) + 1 + 24)(,/P'JA+
2+ (5/A)/P'/n2</(0+e) £ 1/A) < P! + c3P' /v An2e/(+e) 4 cyn/AP'+
cs P’ /(An?¢/(119)) 4 cg1 /P! /n2¢/(0+€) 4 cr A+ cg 4 co /A + c104/P' A+

c11y/ P’ /n2¢/(1+€) /A where c3,cy,...,c11 are some constants.
Since, 1 < A < nf, we have that

D(n) < P'+c3P'/V/n2/(1+9) 4 cyV/ne P! 4 c5 P /n2/(1F€) 1 gy [P! 26/ (1+€)
+cern® +ceg+co +croV P + c114/ P’/nQe/(H'e)

and

Since P’ < cin,

D(n) < P+ csein/Vn2/049) 4+ cy/nfern + csein/n/ (1)

+egy/ein/n?</(149) + ern® + cg + co + cr0/c1n'/?
+c11 /cln/nQE/(l—i-e)

P+ c3ein 49 4y /e, n(1F9/2 4 gyen(1-9)/(146)
+egy/ern(7/ CUTD) 4 eon® 4 eg + cg + cr0y/c1n'/?
ot y/En (-9 20+9)

< P4 eant/049) 4oy un(149)/2

IN

where c¢12 and ¢13 are some constants (because, since 0 < e <1, (1 —¢€)/(2(1+¢€)) < (1 —€)/(1+¢€) <
1/(1+e€),e<(1+4+€)/2,and 1/2 < (1+¢€)/2).

P’ =cin—canP(3/2)' P = cin — canP(1 + c14), where ci14 is a constant such that 1+ ¢4 = (3/2)' 7.

Hence, D(n) < cin — conP (1 + c14) + c1an/ 0+ + ¢13n(149/2 = ¢1n — cynP — (cac1an® — c1on?/0+e) —
c13n(1+6)/2). Thus, for a large enough constant ng, and large enough 3, where 1 > 8 > max{1/(1+¢), (1 +
€)/2}, for all n > ng, cac1an® — c1on'/ 149 — ¢13n(1+9)/2 > 0, and hence D(n) < ¢yn — conP.

The proof for the case A < 1 uses the same reasoning as for the case A > 1. With Ty, R, Wi, Hg, R/,
W', H', R, W, and H defined as above, and Ay as defined in Section 5.2, we get the following values for
Wy, Hg, W', H', W, H, and D(n):

Wi AP’

H, < 4/P'/n?/(1+9) if T} is a small partial tree

15

IN

< zpy/P'JA if Ty is a large partial tree
W' < VAP +2
H' < /P/JA+5,/P'[n2/(+e) 11
W < VAP 4+2+5A,/P'[n2/(+9) 4 A
H < +/P'JA+5(/P'/n2/(0+e) 1 142/A
D(n) S PI + Clznl/(l+€) + 01377/(1+E)/2

where c12 and c;3 are the same constants as in the case A > 1. Therefore, D(n) < ¢in — eanB for A < 1
too. (Notice that in the values that we get above for Wy, Hy, W', H', W, and H, if we replace A by 1/A,
exchange W}, with Hy, exchange W' with H’', and exchange W with H, we will get the same values for Wy,
Hy, W, H', W, and H as in the case A > 1. This basically reflects the fact that the cases A >1and A <1
are symmetrical to each other.) O

Theorem 2 (Main Theorem) Let T be a binary tree with n nodes. Given two numbers A and e, where
€ is a constant, such that 0 < e < 1, and n™¢ < A < nf, we can construct in O(nlogn) time, a planar
straight-line grid drawing of T with O(n) area and aspect ratio A.

Proof: Arbitrarily select a node of T' that has at most one child (for example, we can select any leaf), and
designate it the link node of T. Construct a drawing I' of T' by invoking Algorithm DrawTree with T', A,
and € as input. From Lemmas 1, 2, and 4, I" will be a planar straight-line grid drawing contained entirely
within a rectangle with O(n) area and aspect ratio A. O

Corollary 1 LetT be a binary tree with n nodes. We can construct in O(nlogn) time, a planar straight-line
grid drawing of T with optimal (equal to O(n)) area and optimal aspect ratio (equal to 1).

Proof: Immediate from Theorem 2, with A = 1, and € any constant, such that 0 < € < 1. a

6 Experimental Results

‘We have implemented the algorithm using C++. The implementation consists of about 2100 lines of code. We
have also experimentally evaluated the algorithm on two types of binary trees, namely, randomly-generated,
consisting of up to 50,000 nodes, and complete, consisting of up to 65,535 = 2'6 — 1 nodes.

Each randomly-generated binary tree T, with n nodes was generated by generating a sequence
To,T1, ..., T, of binary trees, where Tp is the empty tree, and T; was generated from T; ; by inserting a new
leaf v; into it. The position, where v; is inserted in T; 1, is determined by traversing a path p = upuy ... unp
of T; 1, where ug is the root of T; 1, and u,, has at most one child. More precisely, we start at the root uy,
and in the general step, assuming that we have already traversed the subpath wgu; ...u;—1, we flip a coin.
If “head” comes up, then if u;_; has a left child ¢, then we set u; = ¢, and move to u;, otherwise we make v;
the left child of u; 1, and stop. If “tail” comes up, then if u; ; has a right child ¢, then we set u; = ¢, and
move to u;, otherwise we make v; the right child of u; 1, and stop.

Recall that the algorithm takes three values as input: a binary tree 7' with n nodes, a number €, where
0 < e< 1, and a number A in the range [n™¢,n].

The performance criteria we have used to evaluate the algorithm is the ratio c of the area of the drawing
constructed of a tree T, and the number of nodes in T'. Recall that the area and aspect ratio of a drawing
is defined as the area and aspect ratio, respectively, of its enclosing rectangle.

To evaluate the algorithm, we varied n up to 50,000 for randomly-generated trees, and up to 65,535 =
— 1 for complete trees. For each n, we used five different values for €, namely, 0.1, 0.25, 0.5, 0.75, and
0.9. For each (n,¢€) pair, we used 20 different values of A uniformly distributed in the range [1,n¢]. The
performance of the algorithm is symmetrical for A < 1 and A > 1. Hence, we varied A only from 1 through
nf, not from n~¢ through n° (the only difference between A < 1 and A > 1 is that for A < 1 the algorithm
constructs drawings with longer height than width, whereas for A > 1, it constructs drawings with longer
width than height). Hence, in the rest of the section, we will assume that A > 1. For each type of tree
(randomly-generated and complete), and for each triplet (n, A, €), we generated three trees of that type. We

216

16

constructed a drawing of each tree using the algorithm, and computed the value of c. Next, we averaged the
values of ¢ obtained for the three trees to get a single value for each triplet (n, A, €) for each tree-type.

Our experiments show that the value of ¢ is generally small, and is at most 10 for randomly-generated,
and at most 8 for complete trees. Figure 7, and Figure 8 show how ¢ varies with n, A, and ¢ for randomly-
generated, and complete trees, respectively.

We also discovered that c increases with A for a given n and e. However, the rate of increase is very small.
Consequently, for a given n and €, the range for ¢ over all the values of A is small (see Figure 7(b,d,fh,j),
and Figure 8(b,d,f,h,j)). For example, for n = 10,000, and € = 0.5, for randomly-generated trees, the range
for ¢ is [4.2,5.2].

Similarly, for a given n and A, c increases with e.

Finally, we would like to comment that the aspect ratio of the drawing constructed is, in general, different
from the input aspect ratio A. We computed the ratio r of the aspect ratio of the drawing constructed by
the algorithm and input aspect ratio A. We discovered that r is close to 1 for A = 1, generally decreases as
we increase A, and can get as low as 0.1 for A = n¢. However, we also discovered that for a large range of
values for A, namely, [1, min{n¢,n/log” n}], r stays within the range [0.8,1.5], and so is close to 1. Hence,
even in applications, that require the drawing to be of exactly the same aspect ratio as A, we can obtain a
drawing with small area and aspect ratio exactly equal to A by adding enough “white space” to the drawing
constructed by our drawing algorithm. Adding the white space will increase the area of the drawing by a
factor of at most max{1/0.8,1.5} = 1.5 (assuming that A is in the above-mentioned range). Hence, the area
of the drawing will still be small.

References

[1] T. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing area and aspect ratio in straight-
line orthogonal tree drawings. Computational Geometry: Theory and Applications, 23:153-162, 2002.

[2] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings
of binary trees. Comput. Geom. Theory Appl., 2:187-200, 1992.

[3] P. Crescenzi, P. Penna, and A. Piperno. Linear-area upward drawings of AVL trees. Comput. Geom.
Theory Appl., 9:25-42, 1998. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamas-
sia).

[4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle
River, NJ, 1999.

[5] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings with optimal area. Internat.
J. Comput. Geom. Appl., 6:333-356, 1996.

[6] A. Garg and A. Rusu. Straight-line drawings of binary trees with linear area and arbitrary aspect ratio.
In Proc. 10th International Symposium on Graph Drawing (GD 2002), volume 2528 of Lecture Notes in
Computer Science, pages 320-331. Springer-Verlag, 2002.

[7] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st Annu. IEEE Sympos. Found.
Comput. Sci., pages 270-281, 1980.

[8] C.-S. Shin, S.K. Kim, S.-H. Kim, and K.-Y. Chwa. Area-efficient algorithms for straight-line tree
drawings. Comput. Geom. Theory Appl., 15:175-202, 2000.

[9] L. Trevisan. A note on minimum-area upward drawing of complete and Fibonacci trees. Inform. Process.
Lett., 57(5):231-236, 1996.

[10] L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput., C-30(2):135-140, 1981.

17

c=area/n

[
o

BN WA OO N ®©©

500000

(a) e=0.9

(c) e = 0.75

c=area/n

=
o
1

BN WA OO N ©©

=)
o

16000

3500

18

o Fr N W A OO N O ©

o Rr N W A O O N O ©

c = area/n

[N
o
1

o Rr N W A O O N O ©

(d) e = 0.75

(f) e=0.5

¢ =area/n

=
o

15

PN WU O N O ©

=
o

c=area/n

=
o

PN WA O N O ©

=
o

(i) e=0.1

Figure 7: Performance of the algorithm, as given by the value of ¢, for drawing a randomly-generated binary
tree T with different values of A and ¢, where c=area of drawing/number of nodes n in T: (a) € = 0.9, (c)
e =0.75, (e) e = 0.5, (g) e = 0.25, and (i) e = 0.1. Figures (b), (d), (f), (h), and (j) contain the projections
on the X Z-plane of the plots shown in Figures (a), (c), (e), (g), and (i), respectively, and show for each e,

c=area/n

[N
o

9
8
7
6
5
4
3
2
1
018

[

(h) e=0.25

c=area/n

[N
o

O P N W A U O N ® ©

‘ |
L

(jl)e=01

the ranges for the values of ¢ for different values of A for each n.

19

c=area/n

10
c=area/n

g =
10

8 =
9
8 r
7 6
6 5
5 4
4 3
3 o [
2 25000 1
1

0 127—8149+—46383—32#6+—————65535

=)
N
~

(a) e=0.9 (b) e=0.9
c=area/n
10
c = area/n
9
10
8 =
g =
8 r
7 6T
6 5
5 4
4 3
3 o [
2 4000
1 ir
0 1274—819+—36383—3276+————————65535

=)
N

(c) e =0.75 (d) e =0.75

c = area/n

c=area/n l;) :

10

9 - &r

8 r

7+ 6 r

6 5 |

5 4+

‘3‘ 3 ’-”\ ‘ |
2+

i 1|
0 1274—819+—36383—3276+————————65535

=)
N

(e) e=0.5 (f)e=0.5
20

c=area/n

[N
o
1

¢ =area/n

=
o

20

PN WU O N O ©

O P N W A U O N ® ©
T

o
N

(g) €=10.25 (h) e =0.25

c=area/n

[N
o
1

c=area/n

=
o

PN WA O N O ©

O P N W A U O N ® ©
T

o
N

(i) e=0.1 (G) e=0.1

Figure 8: Performance of the algorithm, as given by the value of ¢, for drawing a complete binary tree T
with different values of A and €, where c=area of drawing/number of nodes n in T: (a) e = 0.9, (c) e = 0.75,
(e) e = 0.5, (g) e = 0.25, and (i) € = 0.1. Figures (b), (d), (f), (h), and (j) contain the projections on the
X Z-plane of the plots shown in Figures (a), (c), (e), (g), and (i), respectively, and show for each ¢, the
ranges for the values of ¢ for different values of A for each n.

21

