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Abstract

In a visibility representation (VR for short) of a plane graph G, each vertex of G is represented by
a horizontal line segment such that the line segments representing any two adjacent vertices of G are
joined by a vertical line segment. Rosenstiehl and Tarjan [6], Tamassia and Tollis [9] independently
gave linear time VR algorithms for 2-connected plane graph. Using this approach, the height of the
VR is bounded by (n — 1), the width is bounded by (2n — 5). After that, some work have been done
to find a more compact VR. Kant and He [3] proved that a 4-connected plane graph has a VR with
width bounded by (n — 1). Kant [2] reduced the width bound to [2%-¢| for general plane graphs.

2
Recently, using a sophisticated greedy algorithm, Lin et. al. reduced the width bound to %J

[5]-
In this paper, we prove that any plane graph G has a VR with width at most | 13%-24], which
can be constructed by using the simple standard VR algorithm in [6, 9].
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1 Introduction

A wisibility representation (VR for short) of a plane graph G is a drawing of G, where the vertices of
G are represented by non-overlapping horizontal segments (called vertex segments), and each edge of G
is represented by a vertical line segment touching the vertex segments of its end vertices. The problem
of computing a compact VR is important not only in algorithmic graph theory, but also in practical
applications such as VLSI layout [6, 9].

Without loss of generality, we assume that G is a 2-connected plane graph with n vertices. It was
shown in [6, 9] that a VR of a plane graph G can be obtained by a simple linear time algorithm from
an st-orientation of G and the corresponding st-orientation of its dual graph G*. Using this approach,
the height of the VR is bounded by (n — 1) and the width of the VR is bounded by (2n — 5) [6, 9].

One of the main concerns for VR is the size of the representation. Some work have been done to
reduce the width of the VR by carefully choosing a special st-orientation of G. Kant and He proved
that every 4-connected plane graph G has a VR with width bounded by (n—1) [3]. Based on this, Kant
proved that every plane graph has a VR with width at most |3%-8| [2]. Very recently, using a more
sophisticated greedy algorithm, Lin et. al. reduced the width bound to Lmq—g‘mj by choosing the best
st-orientation from three st-orientations derived from a Schnyder’s realizer of G [5]. Their algorithm
runs in linear time and uses a sophisticated greedy approach.
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In this paper, we prove that every plane graph G has a VR with width at most L%J by applying
the simple standard VR algorithm in [6, 9]. In order to obtain the new width bound, we first prove
that, for a plane graph G with an st-orientation O, the width of the VR constructed by the algorithm
in [6, 9] is bounded by |E| — Scorep(G), where Scorep(G) is the sum of the minimum of the number
of bigger neighbors and smaller neighbors of vertices in G. Then we prove that, among the three st-
orientations from a Schnyder’s realizer of a plane triangulation G, at least one st-orientation O has
Scorep(G) > [w]. Thus we are able to obtain the new width bound L%—”ﬂ.

The present paper is organized as follows. Section 2 introduces definitions and preliminary results.
Section 3 proves the relation between the width of VR and the score of an st-orientation for a 2-connected
plane graph. Section 4 presents the construction of a VR with width at most L%J.

2 Preliminaries

In this section, we give definitions and preliminary results. G = (V, E) denotes a graph with n = |V|
vertices and m = |E| edges. The degree of a vertex v € V, denoted by degg(v), is the number of edges
incident to v. If G is clearly understood, we simply write deg(v) for degg(v). A planar graph G is a
graph which can be embedded on the plane without edge crossings. A plane graph is a planar graph with
a fixed embedding. The embedding of a plane graph divides the plane into a number of regions, called
faces. The unbounded region is the exterior face. Other regions are interior faces. The vertices and the
edges on the exterior face are called exterior vertices and exterior edges. Other vertices and edges are
called interior vertices and interior edges. A path P of G is a sequence of distinct vertices ui,uo, ..., ug
such that (u;,u;+1) € E for 1 < i < k. We also use P to denote the set of the edges in it. Each w; for
1 < i < k is called an internal vertex of P. Furthermore, if (ug,u1) € E, then uq,ug,...,u is called a
cycle. We normally use C' to denote a cycle and the set of the edges of it. If C has 3 vertices, it is called
a triangle. A cycle C of G divides the plane into its interior region and exterior region. If all facial
cycles of G are triangles, G is called a plane triangulation. We abbreviate the words “counterclockwise”
and “clockwise” as ccw and cw respectively.

The dual graph G* = (V*, E*) of a plane graph G is defined as follows: For each face F' of G, G*
has a node vp. For each edge e in G, G* has an edge e* = (vp,,vp,) where F; and F» are the two faces
of G with e on their common boundaries. e* is called the dual edge of e. For each vertex v € V, the
dual face of v in G* is denoted by v*.

An orientation of a graph G is a digraph obtained from G by assigning a direction to each edge
of G. We will use G to denote both the resulting digraph and the underlying undirected graph unless
otherwise specified. (Its meaning will be clear from the context).
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Figure 1: Properties of an st-orientation.



Let G be a plane graph with a distinguished exterior edge (s,t). An orientation of G is called an
st-orientation, if it is acyclic with s as the only source and ¢ as the only sink.

Let G be a plane graph and (s,t) a distinguished exterior edge of G. An st-numbering of G is a
one-to-one mapping £ : V. — {1,2,---,n}, such that £(s) = 1, £(¢) = n, and each vertex v # s,t has
at least two neighbors u, w with £(u) < &(v) < &(w), where u (w, resp.) is called a smaller (bigger,
resp.) meighbor of v. Given an st-numbering £ of G, we can orient G by directing each edge in E from
its lower numbered end vertex to its higher numbered end vertex. The resulting orientation will be
called the orientation derived from . Obviously, this orientation is an st-orientation of G. On the other
hand, if G = (V, E) has an st-orientation O, we can define a 1-1 mapping £ : V — {1,---,n} by using
topological sort. It is easy to see that ¢ is an st-numbering (where £(s) = 1 and £(¢) = n) and the
orientation derived from £ is . From now on, we will interchangeably use the term an st-numbering
of G and the term an st-orientation of G, where each edge of G is directed accordingly.

Given any st-orientation of G, for each vertex v, the incoming edges of v appear consecutively
around v, and so do the outgoing edges of v. The face of G that separates the incoming edges of v from
the outgoing edges of v in clockwise direction is denoted by left(v). The face of G that separates the
incoming edges of v from the outgoing edges of v is denoted by right(v). The boundary of every face
of G consists of two directed paths. For each edge e of G, the face on the left (right, resp.) side of e is
denoted by left(e) (right(e), resp.) (See Fig. 1.)

Lempel et. al. [4] showed that for every 2-connected plane graph G and any exterior edge (s, 1),
there exists an st-numbering £ of G. Thus, G has an st-orientation derived from &, with s as the only
source and t as the only sink.

Figure 2: A 2-connected plane graph and one of its st-orientation O.

Let G be a 2-connected plane graph and (s,t) be an exterior edge. Let O be an st-orientation of G,
where s is the source and ¢ is the sink. Consider the dual graph G* of G. For each e € G, we direct
its dual edge e* from the face on the left of e to the face on the right of e when we walk on e along its
direction in ). We then reverse the direction of (s,¢)*. It was shown in [6, 9] that this orientation is
an st-orientation of G* with (s,t)* as the distinguished exterior edge. We denote the source by 3, and
the sink by . When we embed G and G* on plane simultaneously, we fix t* to be the exterior face of
G*. We will denote this orientation of G* by O* and call it the corresponding st-orientation of O. For
each vertex v of G, we define dist(v) to be the length of the longest path from source s to v. For each
node v* in G*, define dist*(v*) to be the length of the longest directed path from the source s to v*.



For example, in Fig. 2, the graph G drawn in solid lines is 2-connected with one st-orientation O, G*
is drawn in dashed lines with O*. The vertices of G are represented by circles. The nodes of G* are
represented by squares. The numbers inside the circles (squares, resp.) are the dist(v) of vertices in G
(dist*(v*) of nodes in G*, resp.)

The following VR algorithm was given in [6, 9]:

Algorithm 1: Visibility Representation
Input: A 2-connected plane graph G.
Output: A VR of G.

1. Compute an st-orientation O of G.
2. Construct its dual G* and the corresponding st-orientation O* of G*.
3. Compute dist(v) for the vertices of G and dist*(v*) for the nodes of G*.

4. For each vertex v of G, do:
If v # s, t, draw horizontal line between (dist*(left(v)), dist(v)) and (dist*(right(v)) — 1, dist(v)).
If v = s or ¢, draw horizontal line between (0,d(v)) and (dist*(¢), d(v)).

5. For each edge (u, v) of G, draw vertical line between (dist*(left(u,v)), dist(u)) and (dist*(le ft(u,v)),
dist(v)).

The correctness of the above VR drawing algorithm was proved in [6, 9]:

Lemma 1 Let G be a 2-connected plane graph with n vertices. Let O be an st-orientation of G.
Algorithm 1 produces a VR of G in linear time. The width of the VR is the length of the longest directed
path in the corresponding st-orientation O* of G*.

3 Bounding the Width of VR of a Plane Graph

We assume that G is a 2-connected plane graph in this section. In order to obtain a VR of G with
reduced width, we need to find an st-orientation O of G such that the length of longest path in O* of
G* is reduced. First, we introduce several concepts.

Definition 1 Let G be a 2-connected plane graph, O be an st-orientation of G. Let G* be the dual
graph of G, O* be the corresponding st-orientation of O.
1. For any vertex v # s,t of G, define:
Hand(v) = {(v,u) € E | u is a bigger neighbor of v};
Foot(v) = {(u,v) € E | u is a smaller neighbor of v}.
Forv = s, define Foot(s) = {(s,t)}, Hand(s) = {(s,u) € E| u # t}. (Note, the two definitions
for the source s are special.)
2. For face v* # t* of G*, define:
cover(v*) = {e* | e € Hand(v)};
sheet(v*) = {e* | e € Foot(v)}.

Note that, for any face v* # t* of G* (including s*), its boundary consists of two directed paths,
one is cover(v*), the other is sheet(v*).



3. For vertex v # t of G, define scoreno(v) = min{|Hand(v)|, |Foot(v)|}, and Scorep(G) =
D vt Scoreo(v).

For example, in Fig. 2, Hand(vs) = {(v3,v4), (vs3,v5)} and Foot(vs) = {(s,v3), (v2,v3)}. For v}
in G*7 COUGT(U;) = {(f17f3)7 (f37f4)} and Sheet(v*) = {(f17f2)7 (f27 f4)}

Now we can give the following technical theorem:

Theorem 1 Let G be a 2-connected plane graph with an st-orientation O. Let O* be the st-orientation
of G* derived from O. Then G has a VR with width at most |E| — Scorep(G).

Proof: We embed G and G* in the plane, such that the face t* of G* as the exterior face of G*. Let

Figure 3: The proof of Theorem 1.

(5,t) be the distinguished exterior edge of O*, @ be the other path connecting 3, ¢ which is part of the
exterior boundary. Then @ and (3, t) enclose a closed region, denoted by R, consisting of all the interior
faces of G* (namely, all the dual faces v* # t* of v # ¢ in G). See Fig. 3 for an illustration.

Let P be the longest directed path in O* from 3 to . P cut the region R into two subregions:
R1, Ry, where R; is enclosed by @ and P, Ry is enclosed by P and (3,t). We observe that for any
face v* inside R; (Ra2, resp.), its cover(v*) (sheet(v*), resp.) is not on the path P. For example, in
Fig. 3, v* is in Ry, cover(v*) = {(f1,f3), (f3, fa), (fa, f5)} is not on P. Also observe that: each
edge in G* can only be in at most one cover set. Thus: P N (Ugy in g,}cover(v®)) = 0. Similarly,
PN (Ugp in Ro}sheet(v®)) = 0.

Note that all the interior faces of G* are either in Ry, or in Ry. So, Y gy ;5 gy} lcover(v¥)| +
> (v in Ry} |Sheet(v)] = Xqy v in Ry} [Hand(v)| + X qy) v+ in By} |[Fo0t(v)| > Scoreo(G). Thus, the
length of P is at most |E|— Scorep(G). By Lemma 1, G has a VR with width at most |E|— Scoreo(G).

O

In [5], Lin et. al. proved that their sophisticated greedy algorithm outputs a VR of G with the
width bounded by |E| — Scorep(G). Theorem 1 shows that the simpler VR algorithm in [6, 9] achieves
the same width bound.

For a 4-connected plane triangulation G, Kant and He gave an st-orientation O of G such that
Scorep(G) > (2n — 5) [3]. Thus, using this st-orientation, Algorithm 1 outputs a VR of G with width
at most (n — 1).

4 Compact Visibility Representation

Thus, in order to shorten the width of a VR of a plane graph G, we need to find an st-orientation O of
G such that Scorep(G) is as large as possible.

Without loss of generality, we assume that G is a plane triangulation with n > 4 vertices in this
section. First we need to introduce the concept of Schnyder’s realizer [7, 8]:
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Figure 4: (a) A plane triangulation G and one realizer R of G; (b) A VR of G.

Definition 2 Let G be a plane triangulation with three exterior vertices vi,v2,v, in ccw order. A
realizer R of G is a partition of the interior edges of G into three sets Ty, T, T,, of directed edges such
that the following hold:

e For each i € {1,2,n}, the interior edges incident to v; are in T; and directed toward v;.

e For each interior vertex v of G, the neighbors of v form six blocks Uy, Dy, Uz, D1,Uy, and Dy in
ccw order around v, where U; and D; (j =1,2,n) are the parent and the children of v in Tj.

It was shown in [7, 8] that every plane triangulation G has a realizer R, which can be obtained in
linear time. Each T; (i € {1,2,n}) is a tree rooted at the vertex v; containing all interior vertices of G.
Fig. 4 (a) shows a realizer of a plane triangulation G. Three trees Ty, T, T), are drawn as solid, dashed,
and dotted lines, respectively. (Ignore the small boxes containing integers for now. Their meaning will
be explained later.)

The following lemma shows how to obtain st-numberings from a Schnyder’s realizer [10].

Lemma 2 Let G be a plane triangulation and R = {T1,Ts,T,} a Schnyder’s realizer of G. T be the
tree obtained by T; plus the two exterior edges adjacent to v; in G. T is rooted at v;. Then the ccw
preordering of the vertices of G with respect to T} is an st-numbering of G.

For example, consider the tree 77 (rooted at v1) shown in Fig. 4. The union of 77 and the two
exterior edges (v2,v1) and (vy,v1) is a tree of G, denote it by 77. The ccw preordering of the vertices
of G with respect to Tj are shown in integers inside the small boxes. It is an st-orientation of G by
Lemma 2, denoted by O;. Similarly, we have two other st-orientations Oz, O,.

Denote the set of interior vertices of G by I. Then for each vertex v € I, scorep,(v),i = 1,2,n
is always definable. And obviously Scorep,(G) = 2 + Y, scorep,(v). We denote scoregym(v) =
Yiz1,2,n SCOTEQ, (V) for each v € I.

Next, we want to find a lower bound of }7,_, 5, Scoreo,(G).

Let inter(v) = > ,—1 2,[v is not a leaf of T;], where [c] is 1 (0, resp.) if condition c is true (false,
resp.). Lin et. al. partitioned the interior vertices of G into three subsets A, B, C as follows [5]:

A = {v| inter(v) = 0};

B = {v| inter(v) = 2, deg(v) = 5};

C ={v ¢ B| inter(v) > 1}.



Let &; be the number of internal (namely, non-leaf) vertices in 7;. An interior face f of G is cyclic
with respect to R if each of its three edges belongs to different trees of R. Denote the number of cyclic
interior faces with respect to R by A(R). For example, in Fig. 4 (a), the faces {5,7,6}, {7,9,8},
{9,12,11} (marked by empty circles) are the cyclic faces in R. So, A(R) = 3.

The following results were proved in [1, 5]:

Lemma 3 Let G be a plane triangulation with n > 4 vertices. Let v1,vs,v, be the exterior vertices of
G in the ccw order. Let R = {T1,T»,T,} be any realizer of G, where T;, i € {1,2,n} is rooted at v;
respectively. Let k be the number of connected components of the graph G[B], which is a subgraph of G
induced by B.

1. fl-l-fz-l-fn—A(R):n—l.
2. &+ &+ & — 3= crinter(v) > 2|B| +|C|.
3. scoresym(v) >3+ 2-inter(v) —[ve B], ve I.

4. |B| — k <2A(R).
Now we can prove the following theorem:

Theorem 2 Let G be a plane triangulation with n > 4 vertices, R = {T1,T5,T,} be any Schnyder’s
realizer of G. Then Zi:1,2,n Scorep,(G) > MT" —10.

Proof: Let G[B] be the subgraph of G induced by B. Suppose that G[B] has k connected components.
Let |B|—k = 0A(R), then we have 0 < § < 2 by Lemma 3 (4). Let By, t = 1,2, - - -, k be all the connected
components of G[B]. Lin et. al. observed that [5]: any two distinct vertices of A are not adjacent in G;
and each vertex in A is adjacent to at most one B;. Thus, we know that the number of the connected
components of G[A U B] is at least k. Considering G — (A U B), each interior face of G — (AU B)
contains at most one connected component of G[B]. We remove edges of G — (AU B) until each interior
face contains exactly one connected component of G[B], denote this graph by G’. (If G[B] is empty, G’
does not have interior face.) Let F; (i = 3,4,---) be the set of interior faces of G’ with i edges on its
boundary. Thus, we have:

E=Y IR 0
=3

For any face in F;, i > 4, we can triangulate it into 7 — 2 faces, then by applying Euler’s formula to
the resulting graph, its number of interior faces is at most 2(|C|+3) —5 = 2|C| + 1. (3 comes from the
exterior vertices of G.) Thus:

o0
> (i —2)|F| <2(]C|+3)—5=2|C| + 1.
=3
Therefore:
1 —2 1
>~ |Fl -5 <0l (2)
‘ 2 2
1=3
Using Equation (1) and (2), we have:
k1 1 1
> 2 4 _|Fy| + |Fs| + = |Fs| — =
C1 > 5 + S |Ful + |Fs| + 5| Fe| - 5 (3)



Applying Lemma 3 (1) and (2) and above equation, we have:

E o1 1 1
n+A(R)—4>2|B|+|C| > 2k+25A(’R)+§+§|F4|+|F5|+§|F6|—§
= PR 2AR) — L+ HE + | Bs| + 1 |F|
) g "ol sIT glhel
Thus, we have:
5 701 1
gk = n+ A(R) — 26A(R) — 3~ §|F4| — | F5| — §|F6| (4)

Because any vertex in B has degree 5 in G, and an interior face of G’ in F3 contains at least 1 vertex
from B in G, so it contains at least 3 vertices from A U B in G. Similarly, an interior face of G’ in F}
contains at least 2 vertices from A U B in G. An interior face of G’ in F; for ¢ > 5 contains at least 1
vertices from AU B in G. Thus:

o0
3|Fs| +2|Fa| + ) |Fi| < |A| +|B].
i=5
Add this to Equation (2), we have:

1

5"

N | Ot

7 5 iy}
SIFs|+ 3IFul + S IFs| +3[Fs| + 3 SIFi < 4]+ |B| +1C] +
=7

Combining it with Equation (1), we have:

7 7 5 el 1 1
§k < (§|F3|+3|F4|+§|F5|+3|F6|+Z§|E|)+(§|F4|+|F5|+§|F6|)
=7

5 1 1
— S C|Fy| + |F5| + = |F,
n 2+2| 4|+|5|+2| 6 (5)

Add Equation (4) and (5), and divide both sides by 6. We have:

k< % + %A(R) - %SA(R) 1 (6)

Applying Lemma 3 (2), (3) and above equation, also note that 0 < § < 2, we have:

Z Scorep,(G) = 6+ZSCOT€sum(U)

i=1,2,n vel
> 6+ 2{3 + 2 -inter(v)} — |B|
vel
= 6+3(n—3)+2(n+A(R)—4)—|B|
5n +2A(R) — 11 — | B|
— Bn+2A(R)—11— (|B|—k)—k
1 1 1
> 5n+2A(R) — 11 —-6A(R) — 3" EA(R) + §5A(R) +1
14n 11 2 14n
= —+(=—--HAR)-10> — -1
3 +(6 36) (R)—10> 3 0 (7)



Theorem 3 Let G be a plane triangulation with n > 4 vertices, then G has a VR with width at most
|_13ns;24 J .

Proof: Applying Theorem 2, we have Y ;_; 5, Scorep,(G) > 13 — 10. Thus, one of Scorep,(G)
|'14”9—730]. Applying Theorem 1 and Algorithm 1, the width of the VR is at most 3n — 6 — [%]
L13n9—24J .

For example, Fig. 4 (b) gives a VR of G, using the st-numbering in Fig. 4 (a).

Whether the bound BT" — O(1) is worst case optimal remains open.
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