The Cob Programmer’s Manual

Pallavi Tambay, Bharat Jayaraman
Department of Computer Science and Engineering
University at Buffalo
Buffalo, NY 14260-2000
{tambay,bharat}@cse.buffalo.edu

1 Introduction

Cob is a programming language and execution environment based on the concept of con-
strained objects for compositional and declarative modeling of engineering structures. A con-
strained object is an object whose internal state is governed by a set of (declarative) con-
straints. When several constrained objects are aggregated to form a complex object, their
internal states might further have to satisfy interface constraints. The resultant behavior of
the complex object is obtained by logical inference and constraint satisfaction. For the do-
main of engineering modeling, the paradigm of constrained objects is superior to both a pure
object-oriented language as well as a pure constraint language. While the concept of an object
and its attributes capture the structural aspects of an engineering entity, the concept of con-
straint captures its behavioral properties. Our current prototype includes tools for authoring
constrained-object class diagrams; a compiler that translates class diagrams to CLP(R) code;
and domain-specific visual interfaces for building and testing constrained objects [1,2]. This
manual describes version 1.0 of the Cob programming language.

2 Syntax of Cob Programs

Cob Program. A Cob program is a sequence of class definitions, and each constrained
object is an instance of some class.

program = class_definition™$

All class definitions including the driver class must be in a single file. A Cob program must
end with the $§ character. Any text appearing after the $ symbol is ignored by the compiler.

Class. A class definition consists of attributes, constraints, predicates and constructors.

class_definition ::= [ abstract | class class_id [ extends class_id | { body }

=
body ::= [ attributes attributes ]
[ constraints constraints |
[ predicates pred_clauses |
[

constructors constructor _clause ]

Each of these constituents is optional, and an empty class definition is permitted as a degener-
ate case. Single inheritance of classes is permitted. There can be more that one constructor for
a class. An abstract class is a class without any constructor, and hence cannot be instantiated.
A class name must begin with a lowercase letter, e.g. component, series, parallel.



Attribute Declaration. An attribute is a typed identifier, where the type is either a
primitive type or a user-defined type (i.e. class name) or an array of primitive or user-defined

types.

attributes = decl ; [ decl ; ]"
decl = type id_list
type == primitive_type_id | class_id | type][ ]
primitive_type_id = real | int | bool | char | string
id_list == attribute_id | , attribute_id |*

The size of an array may be constant or left unspecified, e.g.,

component [] [] Varsize2DArray;

component [3] FixedsizeArray;.
A variable/attribute name must begin with an uppercase letter, e.g., V, I, R. An attribute
declaration ends with a semi-colon (;) and multiple attributes within a declaration are sep-
arated by commas (,). There are two internal variables used by the Cob compiler (Cob and
cob), and these names must not appear in a Cob program. For the same reason, the _ symbol
must not appear as a part of any variable/attribute name. All the attributes of a class must
be declared at the beginning of the body of the class following the keyword attributes. If
the class does not have any attributes, the keyword attributes should be left out.

Constraint. The constraints state inter-class or intra-class relations between the attributes.
constraints == constraint ; | constraint ;T
constraint ::= simple_constraint | quantified_constraint
| creational_constraint
creational_constraint := attribute = new class_id(terms)
quantified_constraint ::= forall var in enum : constraint

| exists var in enum : constraint

simple_constraint ::= conditional_constraint | constraint_atom
conditional _constraint := constraint_atom : — literals
constraint_atom ::= term relop term | constraint_predicate_id(terms)
relop == |1=|>|<|>=|<=

Each constraint must end with a semi-colon. A constraint can be simple, quantified or cre-
ational. A simple constraint can either be a constraint atom or a conditional constraint. A
constraint atom is essentially a relational expression of the form term relop term, where term
is composed of functions/operators from any data domain (e.g. integers, reals, etc.) as well
as constants and attributes. e.g.

V=1IH=%R;

Theta =< 2x 3.141;

X = sin(Theta);
A conditional constraint is a constraint atom that is predicated upon a conjunction of literals
each of which is a (possibly negated) ordinary atom or a constraint atom. e.g.

F=Sy*W=+H:-F >O0;

Day =< 29 :- Month = 2, leap(Year);



A quantified constraint is a shorthand for stating a relation where the participants of the
relation may range over enumerations, i.e., indices of an array or the elements of an explicitly
specified set. e.g.

forall C in Cmp: C.I = I;

exists N in Nodes: N.Value = O;
A creational constraint creates an object of a user defined class and binds it to an attribute.
e.g. Rl = new component(Vi, I1, 10);
A creational constraint may appear as the head of a conditional constraint.

Term. Terms can appear in constraints or as arguments to functions/predicates/constructors.

term ::= constant | var | attribute | (term) | arithmetic_expr | func_id(terms)
| sum var in enum : term
| prod var in enum : term
| min var in enum : term

| max var in enum : term

A term may be an arithmetic/boolean expression involving attributes and/or constants from
any data domain (e.g. integers, reals, etc.). We provide a shorthand for iterative terms, where
the iteration is over indices of array or elements of a specified set. This notation is identical
to its mathematical equivalent. e.g. the term

sum X in PC: (X.V) stands for Y., PC[i].V

prod Y in IntArray : Y stands for 7 ; IntArray[:]

min X in RealArray : X"2 stands for min {X?| X € RealArray}

where n = length of PC; m = length of IntArray

Attribute. An attribute is an identifier, an element of an array, or the result of accessing
the attributes of a class using the selection operator (.) on an attribute one or more times.

attribute ::= selector[.selector]™ | attribute[term)]
selector ::= attribute_id | selector_id(terms)
terms = term [, term |*

Literal. A literal is an atom or the negation of an atom.

literals ::= literal | , literal |*
literal ::= [ not | atom
atom = predicate_id(terms) | constraint_atom

If p is an n-ary predicate symbol and ty,...,t, are terms then p(ty,...,t,) is an atom [3]. A
constraint_atom is an atom with a predifined predicate symbol whose properties are known
to the underlying constraint satisfaction system.

Predicate. A predicate is an n-ary relation. We distinguish between ordinary predicate_id
and constraint_predicate_id. The former are defined by the user using Prolog-like rules (whose
syntax is shown below), whereas the latter are a set of predefined predicates (as in CLP-like
languages) whose properties are known to the underlying constraint satisfaction system.



pred_clauses ::=

pred_clause . [ pred_clause . |*

pred_clause ::= clause_head : — clause_body
pred_clause ::= clause_head.
clause_head ::= predicate_id(terms’)
clause_body ::= goal | , goal |*
goal = not | predicate_id(terms’)
terms’ = term’ [, term’ |T
term’ ::= constant | var’ | function_id(terms’)

Note that the only variables that may appear in a term are attributes or those that are
introduced in a quantification. These variables are generated by the non-terminal var. In the
above grammar, the variables that appear in a pred_clause are the usual logic variables of
Prolog. These are referred to as var? in the above syntax.

Constructor. A class that is not abstract can have one or more constructors.

constructor_clauses ::= constructor_clause™
constructor_clause ::= constructor_id(formal_pars) { constructor_body }
constructor_body ::= constraints

The type of a formal parameter of the constructor is not specified. Hence selection operation on
these parameters is not allowed. However, if they are equated to a local attribute of the class,
then the select operation can be performed on the local attribute, since its type is known. The
constructor_id must be the same as the name of the class. The body of a constructor contains a
sequence of ; separated constraints. These constraints hold throughout the life of an instance
of the class and should not be interpreted as one-time/initialization-only constraints.

3 Example

Non-Series/Parallel Circuits. To further illustrate the syntax of Cob and the use of equa-
tional and quantified constraints, we present the well-known example of a non-series/parallel
electrical circuit. We model the components and connections of such a circuit as objects and
their properties and relations as constraints on and amongst these objects. The component
class models any electrical entity (e.g resistor, battery) that has two ends (referred to as 1
and 2). The attributes of this class represent the currents and voltages at the two ends of the
entity. The constraint in class resistor represent Ohm’s law.

The class end represents a particular end of a component. We use the convention that the
voltage at end 1 of a component is V1 (similarly for current). A node aggregates a collection
of ends. When the ends of components are placed together at a node, their voltages must be
equal and the sum of the currents through them must be zero (Kirchoff’s law). Notice the
use of the quantified constraints (forall) to specify these laws. Using these classes we can
model any non-series/parallel circuit. Given initial values for some attributes, this model can
be used to calculate values of the remaining attributes (e.g. the current through a particular
component).




abstract class component { class end {

attributes attributes

real V1, V2, I1, I2; component C;
constraints real E, V, I;

I1 + I2 = 0; constraints
} V=C.V1 :-E = 1;

V=C.V2 :- E 2;

class resistor extends component { I =C.I1 :-E=1;
attributes I =C.I2 :- E = 2;

real R; constructors end(C1l, E1)
constraints {C=2¢C1; E=E1; }

Vi - V2 = I1 * R; }

constructors resistor(D) { R = D; } class node {
} attributes

end [] Ce;

class battery extends component { real V;

attributes constraints

real V; sum C in Ce: C.I = 0;
constraints forall C in Ce: C.V = V;

V2 = 0; constructors node(L) {
constructors battery(X) { V1 = X; } Ce = L; }

} }

Using the above class definitions we give a constrained object definition of the circuit diagram
in Figure 1.

class samplecircuit {

attributes

resistor R12, R13, R23, R24, R34;

battery B;

end Rel21, Rel22, Rel31, Rel32, Re231,Re232 ,

Re241, Re242, Re341, Re342, Bel, Be2;

node N1, N2, N3, N4;

constructors samplecircuit(X) {
R12 = new resistor(10);
R13 = new resistor(10);
R23 = new resistor(5);
R24 = new resistor(10);
R34 = new resistor(5);
Rel121 = new end(R12, 1); Rel22
Re131 = new end(R13, 1); Rel32
Re231 = new end(R23, 1); Re232
Re241 = new end(R24, 1); Re242
Re341 = new end(R34, 1); Re342
B = new battery(10);
Bel = new end(B, 1); Be2 = new end(B, 2);
N1 = new node([Rel121, Bel, Rel31]);

new end(R12, 2);
new end(R13, 2);
new end(R23, 2);
new end(R24, 2);
new end(R34, 2);



N2 = new node([Rel22, Re241, Re231]);
N3 = new node([Rel132, Re232, Re341]);
N4 = new node([Re242, Re342, Be2]);
dump ([R12, R23, R34, R24, R13]);

N2
10 10
N1 %l‘:’ﬂ N4
10 5 _

N3

I

i0ov

Fig. 1. Simple Non-Series Parallel Circuit

For more examples of Cob programs for modeling engineering structures, see files with .cob
extension in the directory
/projects/tambay/Cob/

4 Compiling and Running Cob Programs

4.1 Compilation Modes.

The compiler translates a Cob program to a CLP(R) program. Essentially each class defini-
tion translates to one predicate clause. We use the underlying CLP(R) engine for constraint
handling. Depending upon whether the programmer wants to work with the compiled clpr
file or directly run the executable, there are different modes of compilation described below.

1. To compile a Cob file named foo.cob, into a file named foo.clpr use the command §
/projects/tambay/temp/compiler/cob  foo.cob  foo.clpr
The clp program in foo.clpr should be run in the sicstus clpr module. To do this, start
a prolog process and load in the file foo.clpr. Cob queries can now be evaluated at the
prolog prompt. Note however, that the queries must be calls to the constructor of some
constrained object appended with an extra argument.
$ prolog
|7~ [’foo.clpr’].
|?- samplecircuit(_,.).



2.

4.2

Let

An alternate method of compilation is to compile a Cob file named foo.cob, into a file
named foo.clpr and place the compiled (in prolog) clpr file in foo.run using the command
$ /projects/tambay/temp/compiler/cob  foo.cob foo.clpr -e foo.run

To run the executable, type in its filename and press return. A prolog prompt will be
displayed. Queries should be given at this prompt. Note that the queries must be calls to
the constructor of some constrained object appended with an extra argument.

$ foo.run

|?- samplecircuit(_,.).

. A third way to compile is with the —c option. This will create the executable as in the

previous command but with a cobinterface above the prolog interpreter. To compile in
this way, run the command

$ /projects/tambay/temp/compiler/cob  foo.cob foo.clpr -e foo.run -c

To run the executable, type in its filename and press return. A cob prompt will be dis-
played. Queries can be entered at this prompt in the form of calls to constructors of
constrained objects.

$ foo.run

cob_query ?7- samplecircuit(.).

During the evaluation of the query, if there is an exception, then control will return to
the prolog prompt. To return to the cob_query mode, type the cob_prompt. command.

Example

the name of the above Cob program be kirchoff.cob. Below is a script showing the

compilation and running of the program.

tambay@kulta:compiler@1:06:40pm>cob kirchoff.cob kirchoff.clpr -e ckt
% restoring /projects/tambay/CobToSicstus/cobcompiler...

yes

% consulting /projects/tambay/temp/compiler/kirchoff.clpr...

% /projects/tambay/temp/compiler/ckt.sav created in 110 msec

yes

tambayQ@kulta:compiler@1:06:52pm>ckt
% restoring /projects/tambay/temp/compiler/ckt...

| ?- samplecircuit(4,_).

R12
R23
R34
R24
R13
A=
yes

= [1.0E+01,4.375,0.5625,-0.5625,1.0E+01,_1172]

= [4.375,3.75,0.12500000000000006,-0.12500000000000006,5.0, _2904]

= [3.75,0.0,0.7500000000000001,-0.7500000000000001,5.0, _4636]

= [4.375,0.0,0.43749999999999994,-0.43749999999999994,1.0E+01, _3770]
= [1.0E+01,3.75,0.625,-0.625,1.0E+01,_2038]

[_A] 7



4.3 Error Messages and Warnings

The cob compiler will point out a syntax error by naming the class in which it occurs,
the attribute/constraint/constructor definition in which it occurs and the index of the con-
straint/attribute declaration. If the error is in the i** constraint, it means, it is in the ith
semi-colon separated constraint. Line number of error is not given. Undeclared variables will
not be caught unless the selection operation (.) is being performed on them. If the compilation
hangs, please send e-mail with the uncompilable cob program to tambay@cse.buffalo.edu

If the executable is being formed along with compilation, then errors (if present) will be
detected by the prolog interpreter. These should be removed by correcting the cob program
and re-compiling it.

If the clp translation of a cob program is loaded within prolog manually, then there may
be a series of warnings of singleton variables. In most cases, these can safely be ignored.
However, errors shown during this compilation must not be ignored. They should be removed
by correcting the cob program and re-compiling it.

5 Miscellaneous

Printing Two functions are provided for printing the values of attributes to standard output.

1. dump: To print the value of a variable, use the built-in Cob predicate dump/1. If
A,B,C are Cob program variables with values 1,2 and unknown respectively, and X is an
undeclared variable, then dump([A,B,C,X]) will print

A=1
B =2
C = _some_internal name
X = _some_internal name

2. print: To print a string or just the value of a variable, use print/1. print(’Sample
String’) will print Sample String on standard output.

Type checking Currently type checking is performed only on the variables on which the
select /access “.” operation is performed. This type inference is done at run-time.

Tracing The translated CLP program can be traced by using Prolog’s trace command. Once
in trace mode, the normal debugging commands of Prolog can be used to trace the program.

Using underscore The underscore character (_) can be given as argument to constructors or
predicates. The programmer should get familiar with its use Prolog before using it in Cob.

6 Bug Reports and Other Comments

Please submit bug reports and other comments to tambay@cse.buffalo.edu

References

1. B. Jayaraman and P. Tambay. Constrained Objects for Modeling Complex Structures. In Object-
Oriented Programming Languages Systems and Applications, Companion, pages 71-72, 2000.

2. B. Jayaraman and P. Tambay. Modeling Engineering Structures with Constrained Objects. In
Proc. Symposium on Practical Aspects of Declarative Languages, 2002.

3. J. Lloyd. Foundations of Logic Programming, pages 6—7. Springer-Verlag, 2nd edition, 1987.



