Straight-line Drawings of General Trees with Linear Area and
Arbitrary Aspect Ratio*
(Revised Version)

Ashim Garg Adrian Rusu

Department of Computer Science and Engineering
University at Buffalo

Buffalo, NY 14260
{agarg, adirusu}Q@cse.buffalo.edu

Abstract

Trees are usually drawn planar, i.e. without any crossings. In this paper, we investigate the area
requirement of (non-upward) planar straight-line grid drawings of general trees. A degree-d tree is one
in which each node has at most d edges incident on it. Let T" be a degree-d tree with n nodes, such that
d = O(n®), where 0 < § < 1/2 is a constant. We show that 7' admits a planar straight-line grid drawing
with area O(n) and with any pre-specified aspect ratio in the range [n~%,n®], where « is a constant
such that 0 < o < 1. We also show that such a drawing can be constructed in O(nlogn) time. In
particular, our result shows that optimal area (equal to O(n)) and optimal aspect ratio (equal to 1) is
simultaneously achievable for such drawings.

1 Introduction

Trees are very common data-structures, which are used to model information in a variety of applications. such
as Software Engineering (hierarchies of object-oriented programs), Business Administration (organization
charts), and Web-site Design (structure of a Web-site). A drawing I' of a tree T maps each node of T to a
distinct point in the plane, and each edge (u,v) of T to a simple Jordan curve with endpoints v and v. T'is a
straight-line drawing (see Figure 1(a)), if each edge is drawn as a single line-segment. I is a polyline drawing
(see Figure 1(b)), if each edge is drawn as a connected sequence of one or more line-segments, where the
meeting point of consecutive line-segments is called a bend. I is an orthogonal drawing (see Figure 1(c)), if
each edge is drawn as a chain of alternating horizontal and vertical segments. I' is a grid drawing if all the
nodes and edge-bends have integer coordinates. T is a planar drawing if edges do not intersect each other
in the drawing (for example, all the drawings in Figure 1 are planar drawings). I' is an upward drawing (see
Figure 1(a,b)), if the parent is always assigned either the same or higher y-coordinate than its children. In
this paper, we concentrate on grid drawings. So, we will assume that the plane is covered by a rectangular
grid. Let R be a rectangle with sides parallel to the X- and Y-axes. The width (height) of R is equal to the
number of grid points with the same y (z) coordinate contained within R. The area of R is equal to the
number of grid points contained within R. The aspect ratio of R is the ratio of its width and height. R is
the enclosing rectangle of T, if it is the smallest rectangle that covers the entire drawing. The width, height,
area, and aspect ratio of T' is equal to the width, height, area, and aspect ratio, respectively, of its enclosing
rectangle. T is a binary tree if each node has at most two children. We denote by T'[v], the subtree of T rooted
at a node v of T. T[v] consists of v and all the descendents of v. T' has the subtree separation property [1]

*Research supported by NSF CAREER Award No. 11S-9985136 and NSF CISE Research Infrastructure Award No. 0101244.

bend —»

M
(a) (b (c)

)
Figure 1: Various kinds of drawings of the same tree: (a) straight-line, (b) polyline, and (c) orthogonal.
Also note that the drawings shown in Figures (a) and (b) are upward drawings, whereas the drawing shown
in Figure (c) is not. The root of the tree is shown as a shaded circle, whereas other nodes are shown as black
circles.

if, for any two node-disjoint subtrees T'[u] and T'[v] of T, the enclosing rectangles of the drawings of Tu]
and T'[v] do not overlap with each other. Drawings with subtree separation property are more aesthetically
pleasing than those without subtree separation property. The subtree separation property also allows for a
focus+context style [8] rendering of the drawing, so that if the tree has too many nodes to fit in the given
drawing area, then the subtrees closer to focus can be shown in detail, whereas those further away from the
focus can be contracted and simply shown as filled-in rectangles.

2 Our Result

Planar straight-line drawings are more aesthetically pleasing than non-planar polyline drawings. Grid draw-
ings guarantee at least unit distance separation between the nodes of the tree, and the integer coordinates of
the nodes and edge-bends allow the drawings to be displayed in a display surface, such as a computer screen,
without any distortions due to truncation and rounding-off errors. Giving users control over the aspect ratio
of a drawing allows them to display the drawing in different kinds of display surfaces with different aspect
ratios. The subtree separation property makes it easier for the user to detect the subtrees in the drawing,
and also allows for a focus+context style [8] rendering of the drawing. Finally, it is important to minimize
the area of a drawing, so that the users can display a tree in as small drawing area as possible.

We, therefore, investigate the problem of constructing (non-upward) planar straight-line grid drawings of
general trees with small area. Clearly, any planar grid drawing of a tree with n nodes requires Q(n) area. A
long-standing fundamental question, therefore, has been that whether this is a tight bound also, i.e., given
a tree T with n nodes, can we construct a planar straight-line grid drawing of T' with area O(n)?

In this paper, we partially answer this question in affirmative, by giving an algorithm that constructs a
planar straight-line grid drawing of a degree-d tree with n nodes, where d = O(n?%) is a positive integer and
0 < § < 1/2is a constant, with O(n) area in O(nlogn) time. Moreover, the drawing can be parameterized
for its aspect ratio, i.e., for any constant o, where 0 < a < 1, the algorithm can construct a drawing with any
user-specified aspect ratio in the range [n~%,n%]. Theorem 2 summarizes our overall result. In particular,
our result shows that optimal area (equal to O(n)) and optimal aspect ratio (equal to 1) is simultaneously
achievable (see Corollary 1). It is also interesting to note that the drawings constructed by our algorithm
also exhibit the subtree separation property.

3 Previous Results

Most of the research on drawing trees has dealt with binary trees [4]. Previously, the best-known upper bound
on the area of a planar straight-line grid drawing of an n-node binary tree was O(nloglogn), which was
shown in [1] and [9]. This bound is very close to O(n), but still it does not settle the question whether an n-

node tree can be drawn in this fashion in optimal O(n) area. Thus, our result is significant from a theoretical
view-point. In fact, we already know of one category of drawings, namely, planar upward orthogonal polyline
grid drawings, for which nloglogn is a tight bound [5], i.e., any binary tree can be drawn in this fashion
in O(nloglogn) area, and there exists a family of binary trees that requires 2(nloglogn) area in any such
drawing. So, a natural question arises, if nloglogn is a tight bound for planar straight-line grid drawings
also. Of course, our result implies that this is not the case. Besides, our drawing technique and proofs are
significantly different from those of [1] and [9]. Moreover, the drawing constructed by the algorithms of [1]
and [9] has a fixed aspect ratio, equal to 8(log® n/(nloglogn)), whereas the aspect ratio of the drawing
constructed by our algorithm can be specified by the user.

We now summarize some other known results on planar grid drawings of binary trees (for more results,
see [4]). Let T be an n-node binary tree. [5] presents an algorithm for constructing an upward polyline
drawing of T with O(n) area, and any user-specified aspect ratio in the range [n~%,n®|, where a is any
constant, such that 0 < o < 1. [7] and [11] present algorithms for constructing a (non-upward) orthogonal
polyline drawing of T with O(n) area. [1] gives an algorithm for constructing an upward orthogonal straight-
line drawing of T' with O(nlogn) area, and any user-specified aspect ratio in the range [log n/n,n/logn]. It
also shows that nlogn is also a tight bound for such drawings. [9] gives an algorithm for constructing an
upward straight-line drawing of T' with O(nloglogn) area. If T is a Fibonacci tree, (AVL tree, complete
binary tree), then [2, 10] ([3], [2], respectively) give algorithms for constructing an upward straight-line
drawing of T' with O(n) area.

Table 1 summarizes these results.

| Tree Type | Drawing Type \ Area | Aspect Ratio | Reference |
Fibonacci Upward Straight-line O(n) 6(1) (2, 10]
AVL Upward Straight-line O(n) 6(1) 3
Complete Binary Upward Straight-line O(n) 6(1) 2
General Binary Upward Orthogonal
Polyline O(nloglogn) | 8(log®n/(nloglogn)) [5, 9]
(Non-upward) Orthogonal
Polyline O(n) 6(1) [7, 11]
Upward Orthogonal
Straight-line O(nlogn) [logn/n,n/logn] 1
Upward Polyline O(n) [n=%, n°] 5
Upward Straight-line O(nloglogn) | 8(log” n/(nloglogn)) 9
(Non-upward) Straight-line | O(nloglogn) | 8(log” n/(nloglogn)) 1
O(n) [n~,n?% 6
Degree-O(n?), (Non-upward) Straight-line O(n) [n=%, n?] this paper
where 0 <6 < 1/2

Table 1: Bounds on the areas and aspect ratios of various kinds of planar grid drawings of an n-node tree.
Here, « is a constant, such that 0 < o < 1.

4 Preliminaries

Throughout this paper, by the term drawing, we will mean a planar straight-line grid drawing. We will
assume that the plane is covered by an infinite rectangular grid. A horizontal channel (vertical channel) is
an infinite line parallel to X- (Y-) axis, passing through the grid-points.

Let T be a degree-d tree, with one distinguished node v, which has at most d — 1 children. v is called
the link node of T'. Let n be the number of nodes in T. T is an ordered tree if the children of each node are
assigned a left-to-right order. A partial tree of T is a connected subgraph of T. If T is an ordered tree, then
the leftmost path p of T is the maximal path consisting of nodes that are leftmost children, except the first
one, which is the root of T. The last node of p is called the leftmost node of T. Two nodes of T are siblings
if they have the same parent in 7. T is an empty tree, i.e., T = ¢, if it has zero nodes in it.

Let T be a drawing of T. By bottom (top, left, and right, respectively) boundary of I, we will mean
the bottom (top, left, and right, respectively) boundary of the enclosing rectangle R(I") of I. Similarly, by
top-left (top-right, bottom-left, and bottom-right, respectively) corner of I', we mean the top-left (top-right,
bottom-left, and bottom-right, respectively) corner of R(T').

Let R be a rectangle, such that I' is entirely contained within R. R has a good aspect ratio, if its aspect
ratio is in the range [n~%*,n%], where 0 < a < 1 is a constant.

Let r be the root of T'. Let u* be the link node of T'. T' is a feasible drawing of T', if it has the following
three properties:

e Property 1: The root r is placed at the top-left corner of I'.

e Property 2: If u* # r, then u* is placed at the bottom boundary of I'. Moreover, we can move u*
downwards in its vertical channel by any distance without causing any edge-crossings in I.

e Property 3: If u* = r, then no other node or edge of T is placed on, or crosses the vertical and
horizontal channels occupied by r.

Theorem 1 In any degree-d tree T, there is a node u, such that removing u and its incident edges splits T
into at most d trees, where each tree has at most n/2 nodes in it, and n > 2 is the number of nodes in T.
Node u is called a separator node of T'. Moreover, u can be found in O(n) time.

Proof: To obtain u, we invoke Algorithm FindSeparator with the root of T as its input. Also, as a pre-
process step, before invoking Algorithm FindSeparator, we first compute the number of nodes n(v) in the
subtree rooted at each node v of T. We store the value of n(v) in each node v. We now describe Algorithm
FindSeparator.

Algorithm FindSeparator(u): {u is a node of T'}

1. Let s1,...,s; be the children of u.

2. Let s; be the child of u such that n(s;) = max{n(s1),...,n(s;)}.
3. If n(s;) > n/2, then Return FindSeparator(s;).

4. Else Return u.

The algorithm clearly runs in O(n) time.

Let u be the node of T returned on calling Algorithm FindSeparator(r), where r is the root of 7. We will
prove that u is a separator node of T'. It is easy to see from the description of the algorithm that n(u) > n/2
and n(s) < n/2, for each child s of u. Let T” be the partial tree of T obtained by removing the subtree
rooted at u from 7. Since n(u) > n/2, the number of nodes in 7" is less than n — n/2 = n/2. Also recall
that n(s) < n/2, for each child s of u. Hence, removing u and its incident edges will split 7" into at most d
trees, each containing at most n/2 nodes. Hence, u is indeed a separator node of T O

Let v be a node of tree T located at grid point (3,j) in I'. Let I' be a drawing of T. Assume that the
root r of T is located at the grid point (0,0) in I'. We define the following operations on I' (see Figure 2):

e rotate operation: rotate I' counterclockwise by § degrees around the z-axis passing through r. After a
rotation by d degrees of I', node v will get relocated to the point (icosd — jsind,isind + jcosd). In
particular, after rotating I' by 90°, node v will get relocated to the grid point (—j,1).

e flip operation: flip T" vertically or horizontally. After a horizontal flip of I', node v will be located at
grid point (—i, 7). After a vertical flip of I, node v will be located at grid point (3, —j).

5 Our Tree Drawing Algorithm

Let T be a degree-d tree with a link node u*, where d = O(n‘s) is a positive integer, 0 < § < 1/2 is a constant,
and n is the number of nodes in T. Let A and € be two numbers such that §/(1 —) < e < 1,and Aisin
the range [n~¢,n¢]. A is called the desirable aspect ratio for T.

Our tree drawing algorithm, called DrawTree, takes €, A, and T' as input, and uses a simple divide-and-
conquer strategy to recursively construct a feasible drawing I" of T', by performing the following actions at
each recursive step (as we will prove later, I' will fit inside a rectangle with area O(n) and aspect ratio A):

u*
Te
r rotate flip r

& .
by 90° vertically o
. r
u

Figure 2: Rotating a drawing I" by 90°, followed by flipping it vertically. Note that initially node u* was
located at the bottom boundary of I', but after the rotate operation, v* is on the right boundary of I'.

e Split Tree: Split T into at most 2d — 1 partial trees by removing at most two nodes and their incident
edges from it. Each partial tree has at most n/2 nodes. Based on the arrangement of these partial trees
within 7', we get two cases, which are shown in Figures 3 and 4, and described later in Section 5.1.

e Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ay to each partial tree Ty. The
value of Ag is based on the value of A, and the number of nodes in T}.

e Draw Partial Trees: Recursively construct a feasible drawing of each partial tree Ty with Ay as its
desirable aspect ratio.

e Compose Drawings: Arrange the drawings of the partial trees, and draw the nodes and edges, that
were removed from T to split it, such that the drawing I" of T" thus obtained is a feasible drawing. Note
that the arrangement of these drawings is done based on the cases shown in Figures 3 and 4. In each
case, if A < 1, then the drawings of the partial trees are stacked one above the other, and if A > 1,
then they are placed side-by-side.

Figure 5 shows a drawing of a complete binary tree with 63 nodes constructed by Algorithm DrawTree,
with A =1 and € = 0.2.
We now give the details of each action performed by Algorithm DrawTree:

5.1 Split Tree

The splitting of tree T into partial trees is done as follows:

e Order the children of each node such that u* becomes the leftmost node of T'.

e Using Theorem 1, find a separator node u of 7.

e Based on whether, or not, u is in the leftmost path of T', we get two cases:

— Case 1: The separator node u is not in the leftmost path of T. We get seven subcases:
(a) In the general case, T has the form as shown in Figure 3(a). In this figure:

r is the root of T,
c1,.-.,¢; are the children of u, 0 < j <d —1,
Ti,...,T; are the trees rooted at cy,...,c; respectively, 0 < j <d —1,
T, is the subtree rooted at u,
w is the parent of wu,

f is the child of a that is contained in the path r ~» v,

T3 is the maximal tree rooted at f that contains w but not wu,

T is the tree consisting of the trees Tj, and T}, and the edge (w,u),
e is the parent of a,

*
*
*
*
*
* @ is the last common node of the path r ~» v and the leftmost path of T,
*
*
*
*
* g is the leftmost child of a,

Figure 3: Drawing 7 in all the seven subcases of Case 1 (when the separator node w is not in the leftmost
pathofT): (a) TA7é(Z), TcaéQ),g;éu*,Ogigd—?), (b) TAZQ), TC:Q),OSZ'Sd—& (C) TA%Q,
Tc #0,9g=v*0<i<d-3,(d)Ta #0, Tc =0, 7 #£e,0<i<d—3,(e) Ta# 0, Tc =0, 7 = e,
0<i<d-3,(0)Ta=0,Tc #0,9#u*,0<i<d—-3,and (g) Ta=0,Tc #0,9g=u*,0<:i<d-3.
For each subcase, we first show the structure of T for that subcase, then its drawing when A < 1, and then
its drawing when A > 1. Here, z is the same as f if T # ¢, and is the same as the root of T, if Tg = ¢. In
Subcases (a) and (c), for simplicity, e is shown to be in the interior of I' 4, but actually, either it is the same
asr,or if A <1 (A > 1), then it is placed on the bottom (right) boundary of T 4. For simplicity, we have
shown I'4, I'p, and I'¢ as identically sized boxes, but in actuality, they may have different sizes.

*

T4 is the maximal tree rooted at r that contains e but not a,

*

Tc is the tree rooted at g,

bi,...,b; are the siblings of f and g,

Ty,...,T} are the trees rooted at b1, ...,b; respectively, 0 <i < d— 3, and

gFu.

In addition to this general case, we get six special cases: (b) Ta =0, Tc =0,0<i<d—-3

* ¥ %

Figure 4: Drawing T in all the eight subcases of Case 2 (when the separator node u is in the leftmost path
OfT): (a‘) TA#Q)’TC#Q),’U#“*’ 1<j<d-2, (b) TAZQ,Tc#m,’U#’U;*,jZO, (C) TA:Q,TC’#m’
U#U*,].S_]Sd—z, (d)TA#waTC#w’/l}?éU*’j:O’ (e) TA#Q)TB#Q’UZU*a]-S]Sd_zv (f)
Ta=0,Tg=0,v=u*j=0,(8 Ta=0,Ts#0,v=u*,1<j<d—2,and (h) Ta #0, Ts =0, v = u*,
j = 0. For each subcase, we first show the structure of T' for that subcase, then its drawing when A < 1,
and then its drawing when A > 1. In Subcases (a) and (d), for simplicity, e is shown to be in the interior of
T 4, but actually, either it is same as r, or if A < 1 (A > 1), then it is placed on the bottom (right) boundary
of T'4. For simplicity, we have shown I' 4, I'g, and I'¢c as identically sized boxes, but in actuality, they may
have different sizes.

(see Figure 3(b)), (¢) Ta # 0, Tc # 0, g = u*, 0 < ¢ < d — 3 (see Figure 3(c)), (d) Ta # 0,
Tc =0, 7#e€ 0<i<d-— 3(seeF1gure3(d))()TAgé(Z)Tc—(Z)r:e,OSiSd—3(see
Figure 3(e)), (f) Ta =0, Tc # 0, g # u*, 0 < i < d— 3 (see Figure 3(f)), and (g) Ta = 0, Tc # 0,

g=u* 0<1i<d-3 (see Figure 3(g)) (The reason we get these seven subcases is as follows:
T, has at least n/2 nodes in it because of Theorem 1. Hence T, # ¢, and so, Tp # ¢. Based on
whether T4 = ¢ or not, Tc = ¢ or not, g = u* or not, and r = e or not, we get totally sixteen
cases. From these sixteen cases, we obtain the above seven subcases, by grouping some of these
cases together. For example, the cases Ty = ¢, Tg = ¢, d # u*, r = u*, and Ty = ¢, To = ¢,
d # u*, r # u* are grouped together to give Case (a), i.e., Ta = ¢, Tc = ¢, d # u*. So, Case
(a) corresponds to 2 cases. Similarly, Cases (c), (d), (e), (f), and (g) correspond to 2 cases each,
and Case (b) corresponds to 4 cases.) In each case, we remove nodes a and u, and their incident
edges, to split T into at most 2d — 1 partial trees Ta, T¢, T3, T7,...,T;, 0 < ¢ < d—3, and
Ti,...,Tj,0 < j < d— 1. We also designate e as the link node of T4, w as the link node of Tj,
and u* as the link node of Tc. We arbitrarily select a leaf e; of T}, 0 < ¢ < d — 3, and a leaf e; of
T;, 0 < j <d—1, and designate them as the link nodes of 7; and T}, respectively.

Figure 5: Drawing of the complete binary tree with 63 nodes constructed by Algorithm DrawTree, with
A=1ande=0.2.

— Case 2: The separator node u is in the leftmost path of T. We get eight subcases: (a) In the
general case, T has the form as shown in Figure 4(a). In this figure,

* 71 is the root of T,
v is the leftmost child of w,
c1,.-.,c; are the siblings of v, 1 < j <d —2,

*

Ti,...,T; are the trees rooted at cy,...,c; respectively, 1 < j <d — 2,

e is the parent of u,

T4 is the maximal tree rooted at r that contains e but not u,

T¢ is the subtree of T rooted at v,

Fp is the forest composed by trees T7,...,7;,1<j<d-2, and

v # ur.

In addition to the general case, we get the following seven special cases: (b) Tu =0, j = 0, v # u*
(see Figure 4(b)), (c) Ta =0,1<j <d—2, v # u* (see Figure 4(c)), (d) Ta # 0, j =0, v # u*
(see Figure 4(d)), (e) Ta # 0,1 < j < d—2, v = u* (see Figure 4(e)), (f) Ta =0, j =0, v = u*
(see Figure 4(f)), (g) Ta = 0,1 < j < d—2, v = u* (see Figure 4(g)), and (h) Ta # 0, 7 = 0,
v = u* (see Figure 4(h)). (The reason we get these eight subcases is as follows: T¢ has at least
n/2 nodes in it because of Theorem 1. Hence, T¢ # ¢. Based on whether T4 = ¢ or not, Fp = ¢
or not, and v = u* or not, we get the eight subcases given above.) In each case, we remove node u,
and its incident edges, to split 7" into at most d partial trees T4, T¢, and T1,...,T;,0 < j < d—2.
We also designate e as the link node of T4, and u* as the link node of T. We randomly select a
leaf e; of T; and designate it as the link node of T, 0 < j < d — 2.

¥ X X X X ¥

*

5.2 Assign Aspect Ratios

Let Ty be a partial tree of T, where for Case 1, T, is either T, T¢, I, T7,...,T;, 0 < i < d —3, or
Ti,...,T;,0 < j <d—1, and for Case 2, T} is either T4, T¢, or T1,...,Tj, 0 < j < d—2. Let ny be number
of nodes in Tj.

Definition: T} is a large partial tree of T if:
e A>1and ng > (n/A)Y/ 0+ or
e A <1andng > (An)Y/0+e),

and is a small partial tree of T otherwise.
In Step Assign Aspect Ratios, we assign a desirable aspect ratio A to each nonempty T}y as follows: Let
Tp = ng/n.

o If A>1: If T} is a large partial tree of T, then Ay = z A, otherwise (i.e., if T} is a small partial tree

of T) Ay =n}°.
e If A < 1: If Ty is a large partial tree of T, then Ay, = A/zy, otherwise (i.e., if T} is a small partial tree
of T) A = n§.

Intuitively, this assignment strategy ensures that each partial tree gets a good desirable aspect ratio, and
so, the drawing of each partial tree constructed recursively by Algorithm DrawTree will fit inside a rectangle
with linear area and good aspect ratio.

5.3 Draw Partial Trees

First, we change the desirable aspect ratios assigned to T4 and T in some cases as follows: Suppose T4
and T get assigned desirable aspect ratios equal to m and p, respectively, where m and p are some positive
numbers. In Subcase (d) of Case 1, and if A > 1, then in Subcases (a) and (c) of Case 1, and Subcases (a),
(d), (e), and (h) of Case 2, we change the value of the desirable aspect ratio of T4 to 1/m. In Case 1, if
A > 1, we change the value of the desirable aspect ratio of T to 1/p. We make these changes because, as
explained later in Section 5.4, in these cases, we need to rotate the drawings of T4 and Ts by 90° during
the Compose Drawings step. Drawing T4 and Tz with desirable aspect ratios 1/m and 1/p, respectively,
compensates for this rotation, and ensures that the drawings of T4 and T3 used to draw 1" have the desirable
aspect ratios, m and p, respectively.

Next we draw recursively each nonempty partial tree T} with Ay as its desirable aspect ratio, where the
value of Ay is the one computed in the previous step. The base case for the recursion happens when Ty
contains exactly one node, in which case, the drawing of T} is simply the one consisting of exactly one node.

5.4 Compose Drawings

Let I'y, denote the drawing of a partial tree T}, constructed in Step Draw Partial Trees. We now describe
the construction of a feasible drawing I" of T" from the drawings of its partial trees in both Cases 1 and 2.

In Case 1, we first construct a feasible drawing I', of the partial tree T, by composing I'y,...,[};,
0 <j <d—1, as shown in Figure 6, then construct a feasible drawing I'g of Ts by composing I', and I'g
as shown in Figure 7, and finally construct I' by composing I'4, I'p, I'c, I'}, ..., T, 0 < i < d — 3, as shown
in Figure 3.

'y, is constructed as follows (see Figure 6): If A < 1, place I';,...,T'2,T';, 1 < j < d — 1, one above
the other, in this order, separated by unit vertical distance, such that the left boundaries of I';,...,I'y are
aligned, and one unit to the right of the left boundary of I';. Place u in the same vertical channel as ¢; and
in the same horizontal channel as ¢;. If A > 1, place I'1,I's,...,I';, 1 < j < d—1 in a left-to-right order,
separated by unit horizontal distance, such that the top boundaries of I'y, Iy, ...,I'j_1 are aligned, and one
unit below the top boundary of I';. Place u in the same vertical channel as ¢; and in the same horizontal
channel as c;.

I'p is constructed as follows (see Figure 7):

e if Tg # () (see Figure 7(a)) then, if A < 1, then place 'z one unit above I',, such that the left boundaries
of I's and T, are aligned; otherwise (i.e., if A > 1), first rotate I'z by 90° and then flip it vertically,
then place I'g one unit to the left of I', such that the top boundaries of I'g and I',, are aligned. Draw
edge (w,y).

e Otherwise (i.e., if Tz = @), I'p is same as T, (see Figure 7(b)).

T is constructed from I'4, I'p, T, T'Y,..., T, 0 < ¢ < d— 3, as follows (see Figure 3): Let = be the root

of Tg. Note that z = f if Tg # 0, and z = u otherwise.
!

e In Subcase (a), as shown in Figure 3(a), if A < 1, stack I'4, I'},...,T"}, I'p, I'c one above the other,
in this order, such that they are separated by unit vertical distance from each other, and the left
boundaries of I, _,,...,T|,T'p are aligned with each other and are placed at unit horizontal distance
to the right of the left boundaries of 'y and I'c. Place node a in the same vertical channel as r
and g and in the same horizontal channel as b;. If A > 1, then first rotate I'y by 90°, and then

flip it vertically. Then, place T's, T'g, T',...,T%, T'p from left-to-right in this order, separated by
unit horizontal distances, such that the top boundaries of I'c, I', ..., T}, are aligned, and are at unit
vertical distance below the top boundaries of I'4 and I'g. Then, move I'c down until u* becomes the
lowest node of I'. Place node a in the same vertical channel as g and in the same horizontal channel
as r and z. Draw edges (a,¢€), (a,z), (a,9), (a,b1),..., (a,b;).

e In Subcase (b), as shown in Figure 3(b), if A < 1, stack I';,..., T}, I'p, one above the other, such that
they are separated by unit vertical distance from each other, and their left boundaries are aligned.
Place node r one unit above and left of the top boundary of I'}. If A > 1, place I'},...,I'}, g in a
left-to-right order such that they are separated by unit horizontal distance from each other, and their
top boundaries are aligned. Place node r one unit above and left of the top boundary of I'j. Draw
edges (r,b1),...,(r, b;), (r,z).

e The drawing procedure for Subcase (c) is similar to the one in Subcase (a), except that we also flip '
vertically (see Figure 3(c)).

e In Subcase (d), as shown in Figure 3(d), if A < 1, flip I',..., T}, I'p first vertically, and then horizon-
tally, so that their roots get placed at their lower-right corners. Then, first rotate I' 4 by 90°, and then
flip it vertically. Next, place T'4, I'},..., I}, I'p one above the other, in this order, with unit vertical
separation, such that their left boundaries are aligned, next move node e (which is the link node of T})
to the right until it is either to the right of, or aligned with the rightmost boundary among I';,..., T,
I'p (since I'4 is a feasible drawing, by Property 2, as given in Section 4, moving e will not create
any edge-crossings), and then place u* in the same horizontal channel as z and one unit to the right
of e. If A > 1, first rotate I'4 by 90°, and then flip it vertically. Then flip T},..., T}, ' vertically.
Then, place T4, u*, I'},..., T, I'p left-to-right in this order, separated by unit horizontal distances,
such that the bottom boundaries of I'}, ..., T}, are aligned, and are at unit vertical distance above the
bottom boundary of I's. Move I'g down until its bottom boundary is either aligned with or below
the bottom boundary of I'4. Also, u* is in the same horizontal channel with z. Draw edges (u*,e),
(u*,b1), ..., (u*,b;), (u*,).

e In Subcase (e), as shown in Figure 3(e), if A < 1, first flip T}, ..., T, T'p, vertically, then place T4,
I, ...,T", I'p one above the other, in this order, with unit vertical separation, such that the left
boundaries of I';,..., I}, I'p are aligned, and the left boundary of I'4 is at unit horizontal distance
to the left of the left boundary of I's. Place u* in the same vertical channel with r and in the same
horizontal channel with « . If A > 1, then first flip T}, ..., I}, I'p vertically, next place I'4, I'}, ..., T,
Ip in a left-to-right order at unit horizontal distance, such that the top boundaries T'4, I'},..., T}
are aligned, and the bottom boundary of I'g is one unit below the bottom boundary of the drawing
among I'4, T, ..., T} with greater height. Then, place u* in the same vertical channel as r and in the
same horizontal channel as r. Draw edges (u*,r), (u*,b1),...,(u*,b;), (u*,z). Note that, since I'4 is
a feasible drawing, by Property 3 (see Section 4), drawing (u*,r) will not create any edge-crossings.

e The drawing procedure in Subcase (f) is similar to the one in Subcase (a), except that we do not have
T 4 here (see Figure 3(f)).

e The drawing procedure in Subcase (g) is similar to the one in Subcase (f), except that we also flip '
vertically (see Figure 3(g).

In Case 2, we construct I' by composing I'4, I'1,...,T';, I'c as follows (see Figure 4):

e The drawing procedures in Subcases (a) and (c) are similar to those in Subcases (a) and (f), respectively,
of Case 1 (see Figures 4(a,c)).

e In Subcase (b) as shown in Figure 6(b), if A < 1, place u in the same horizontal channel and at one
unit to the left of v; otherwise (i.e. A > 1), place u in the same vertical channel and at one unit above
v. Draw edge (r,v).

e In Subcase (d), as shown in Figure 4(d), if A > 1, we place I'4 above I'¢, separated by unit vertical
distance such that the left boundary of I'¢ is one unit to the right of the left boundary of I" 4. Place
u in the same vertical channel as r and in the same horizontal channel as v. If A > 1, then first rotate
I'4 by 90°, and then flip it vertically. Then, place I'4 to the left of I'¢, separated by unit horizontal
distance, such that the top boundary of I'¢ is one unit below the top boundary of I'4. Then, move

10

I'c down until u* becomes the lowest node of I'. Place u in the same vertical channel as v and in the
same horizontal channel as 7. Draw edges (u,v) and (u,e).

e The drawing procedures in Subcases (e), (f), (g), and (h) are similar to those in Subcases (a), (b), (c),
and (d), respectively, (see Figures 4(e,f,g,h)), except that we also flip I'c vertically.

Figure 6: Drawing T,. Here, we first show the structure of Ty, then its drawing when A < 1, and then its
drawing when A > 1. For simplicity, we have shown I'y,...,I'; as identically sized boxes, but in actuality,
their sizes may be different.

Yy y
W, Yy y
r
(b)

Figure 7: Drawing T when: (a) T3 # 0, and (b) T = 0. For each case, we first show the structure of T
for that case, then its drawing when A < 1, and then its drawing when A > 1. In Case (a), for simplicity, w
is shown to be in the interior of I'g, but actually, it is either same as f, or if A <1 (A > 1), then is placed
on the bottom (right) boundary of I'g. For simplicity, we have shown I's and I', as identically sized boxes,
but in actuality, their sizes may be different.

5.5 Proof of Correctness

Lemma 1 (Planarity) Given an n-node degree-d tree T, where d = O(n®) is a positive integer and 0 <
6 < 1, with a link node u*, Algorithm DrawTree will construct a feasible drawing T' of T.

Proof: We can easily prove using induction over the number of nodes n in T" that I is a feasible drawing;:
Base Case (n =1): T consists of exactly one node and is trivially a feasible drawing.

Induction (n > 1): Consider Case 1. By the inductive hypothesis, the drawing constructed of each partial
tree of T is a feasible drawing.

Hence, from Figure 6, it can be easily seen that the drawing I',, of T}, is also a feasible drawing.

From Figure 7, it can be easily seen that the drawing I'g of T is also a feasible drawing. Note that
because I's is a feasible drawing of T and w is its link node, w is either at the bottom of I'g (from Property 2,
see Section 4), or at the top-left corner of I'g and no other edge or node of Tp is placed on, or crosses the
vertical channel occupied by it (Properties 1 and 3, see Section 4). Hence, in Figure 7(a), in the case A < 1,
drawing edge (w,z) will not cause any edge crossings. Also, in Figure 7(a), in the case A > 1, drawing edge
(w,) will not cause any edge crossings because after rotating I's by 90° and flipping it vertically, w will
either be at the right boundary of I'g (see Property 2), or at the top-left corner of I's and no other edge or
node of T will be placed on, or cross the horizontal channel occupied by it (see Properties 1 and 3).

Finally, by considering each of the seven subcases shown in Figure 3 one-by-one, we can show that I is
also a feasible drawing of T":

e Subcase (a): See Figure 3(a). T'4 is a feasible drawing of T4 and e is the link node of T4. Hence,
e is either at the bottom of I'4 (from Property 2), or is at the top-left corner of I'4, and no other
edge or node of T4 is placed on, or crosses the horizontal and vertical channels occupied by it (from
Properties 1 and 3). Hence, in the case A < 1, drawing edge (e, a) will not create any edge-crossings,
and I" will also be a feasible drawing of T'. In the case A > 1 also, drawing edge (e, a) will not create
any edge-crossings because after rotating I' 4 by 90° and flipping it vertically, e will either be at the

11

right boundary of I'4 (see Property 2), or at the top-left corner of I'g and no other edge or node of Ty
will be placed on, or cross the horizontal channel occupied by it (see Properties 1 and 3). Thus, for
the case A > 1 also, I" will also be a feasible drawing of T'.

e Subcase (b): See Figure 3(b). BecauseI'},...,I';, I'p are feasible drawings of T}, . .., T}, Tz respectively,
it is straightforward to see that I' is also a feasible drawing of T' for both the cases when A < 1 and
A>1

e Subcase (c): See Figure 3(c). The proof is similar to the one for Subcase (a).

e Subcase (d): See Figure 3(d). T'4 is a feasible drawing of T4, e is the link node of T4, and e # r.
Hence, from Property 2, e is located at the bottom of " 4. Rotating I" 4 by 90° and flipping it vertically
will move e to the right boundary of I'4y. Moving e to the right until it is either to the right of, or
aligned with the right boundary of I'p will not cause any edge-crossings because of Property 2. It
can be easily seen that in both the cases, A < 1 and A > 1, drawing edge (e, u*) does not create any
edge-crossings, and I is a feasible drawing of T'.

o Subcase (e): See Figure 3(e). I'4 is a feasible drawing of Ty, e is the link node of T4, and e = r. Hence,
from Properties 1 and 3, e is at the top-left corner of I' 4, and no other edge or node of T4 is placed
on, or crosses the horizontal and vertical channels occupied by it. Hence, in both the cases, A < 1 and
A > 1, drawing edge (e, u*) will not create any edge-crossings, and I' is a feasible drawing of 7.

e Subcase (f): See Figure 3(f). It is straightforward to see that I is a feasible drawing of T for both the
cases when A <1 and A > 1.

o Subcase (g): See Figure 3(g). I'c is a feasible drawing of T, u* is the link node of T, and u* is also
the root of Tx. Hence, from Properties 1 and 3, u* is at the top-left corner of I'¢, and no other edge
or node of T¢ is placed on, or crosses the horizontal and vertical channels occupied by it. Flipping
I'¢c vertically will move u* to the bottom-left corner of I'c and no other edge or node of T will be
on or crosses the vertical channel occupied by it. Hence, drawing edge (r,u*) will not create any
edge-crossings, and I' will be a feasible drawing of T'.

Using a similar reasoning, we can show that in Case 2 also, I is a feasible drawing of T |

Lemma 2 (Time) Given an n-node degree-d tree T, where d = O(n?) is a positive integer and 0 < § < 1,
with a link node u*, Algorithm DrawTree will construct a drawing T' of T in O(nlogn) time.

Proof: From Theorem 1, each partial tree into which Algorithm DrawTree would split T' will have at most
n/2 nodes in it. Hence, it follows that the depth of the recursion for Algorithm DrawTree is O(logn). At
the first recursive level, the algorithm will split 7" into partial trees, assign aspect ratios to the partial trees
and compose the drawings of the partial trees to construct a drawing of T'. At the next recursive level,
it will split all of these partial trees into smaller partial trees, assign aspect ratios to these smaller partial
trees, and compose the drawings of these smaller partial trees to construct the drawings of all the partial
trees. This process will continue until the bottommost recursive level is reached. At each recursive level, the
algorithm takes O(m) time to split a tree with m nodes into partial trees, assign aspect ratios to the partial
trees, and compose the drawings of partial trees to construct a drawing of the tree. At each recursive level,
the total number of nodes in all the trees that the algorithm considers for drawing is at most n. Hence, at
each recursive level, the algorithm totally spends O(n) time. Hence, the running time of the algorithm is
O(n) - O(logn) = O(nlogn).

O
In Lemma 4 given below, we prove that the algorithm will draw a degree-d tree, where d = O(n?%) is a
positive integer and 0 < § < 1, in O(n) area.

Lemma 3 Let R be a rectangle with area D and aspect ratio A. Let W and H be the width and height,
respectively, of R. Then, W =+ AD and H = 1/D/A.

Proof: By the definition of aspect ratio, A= W/H. D = WH = W(W/A) = W?/A. Hence, W = vV AD.
H=W/A=+AD/A=/DJA. O

Lemma 4 (Area) Let T be an n-node degree-d tree, where d = O(n®) is a positive integer and 0 < § < 1,
with a link node u*. Let € and A be two numbers such that §/(1 — §) < € < 1, and A is in the range

12

[n=¢,n]. Given T, €, and A as input, Algorithm DrawTree will construct a drawing T' of T that can fit
inside a rectangle R with O(n) area and aspect ratio A.

Proof: Let D(n) be the area of R. We will prove, using induction over n, that D(n) = O(n). More
specifically, we will prove that D(n) < c;n — con® for all n > ng, where ng,ci,cz, 3 are some positive
constants and 8 < 1.

We now give the proof for the case when A > 1 (the proof for the case A < 1 is symmetrical). Algorithm
DrawTree will split T into at most 2d — 1 partial trees. Let Ty be a non-empty partial tree of T', where
Ty is one of Ta,T¢,1p,17,...,T}, 0 < ¢ < d -3, T1,...,T;, 0 < j < d -1, in Case 1, and is one of
Ta,Tc,T1,...,T;, 0 < j < d—2, in Case 2. Let n; be the number of nodes in Ty, and let zx = ni/n.
Let P, = cin — cznﬁ/xll;ﬂ. From Theorem 1, it follows that ny < n/2, and hence, z < 1/2. Hence,
Py <cin—cenP/(1/2)1 8 = cin — conP2l=P. Let P! = cyn — conf2'=#. Thus, P, < P'.

From the inductive hypothesis, Algorithm DrawTree will construct a drawing I'y of T} that can fit
inside a rectangle Rj with aspect ratio Ay and area D(ny), where Ay is as defined in Section 5.2, and
D(ng) < e1ng — cmf. Since zx = ng/n, D(ng) < cing — Can = cizin — ca(zxn)? = zp(cin — chﬁ/w,lcfﬂ) =
TP < zp P

Let Wy and Hj be the width and height, respectively, of R;. We now compute the values of Wy and Hy,
in terms of A, P’, z, n, and e. We have two cases:

e Ty is a small partial tree of T: Then, ng < (n/A)'/(1+€) and also, as explained in Section 5.2, Ay =

1/n§. From Lemma 3, W, = \/AxD(nk) < +/(1/ng)(zkP") = /(1/n5)(nk/n) P’ = {/n,~“P’/n. Since
ng < (n/A)l/(l-l-e)’ W < \/(n/A)(l—e)/(1+e)Pl/n — \/(1/A(1—e)/(1+€))Pl/n2e/(1+e) < \/Pl/nZG/(l—i-E)
since A > 1.
From Lemma 3, Hy = /D(ny)/Ax < /zeP'/(1/ng) = /(nk/n)P'ng = 1/ny P’/n. Since ni <
(n/A)3+9, Hy < /(0] A) TP [= \/(n]A)P']n = \/P//A.

e Ty is a large partial tree of T: Then, as explained in Section 5.2, Ay = zxA. From Lemma 3,
Wk = \/AkD(nk) S \/:EkA.'EkP' = wk\/ﬁ.
From Lemma 3, Hy = 1/D(n)/Ax < \/ziP'/(zxA) = /P /A.

In Step Compose Drawings, we use at most two additional horizontal channels and at most one additional

vertical channels while combining the drawings of the partial trees to construct a drawing I" of 7. Hence, T’
can fit inside a rectangle R’ with width W’ and height H’, respectively, where,

H < max {Hp}+2 < +/P'/A+2,

~ Ty is a partial tree of T

and
W < E Wi + g Wi +1
Tk is a large partial tree Ty is a small partial tree
< § : xk*/AP’-I- § : /P//nze/(1+e) +1
Ty is a large partial tree Ty is a small partial tree

VAP' 4 (2d — 1)/ P! /n2</(1+e) 41

(because D 7. s 4 targe partial tree Tk < 1, and T'is split into at most 2d — 1 partial trees)
R’ does not have aspect ratio equal to A, but it is contained within a rectangle R with aspect ratio A,
area D(n), width W, and height H, where

W = VAP + (2d — 1)1/ P /n2e/(149) 11 4 24,
H=/PJA+2+((2d - 1)/A)\/P'/n2</(1+9) 1 1/4

Hence, D(n) = WH = (VVAP'+(2d—1)/P" /n2¢/(+6) 142A)(y/P"JA+2+((2d—1)/A)/ P /n2e/(+€) 4
1/A) = P' +2(2d —1)P' /v An2e/(0+9) 4 4/ AP 4 (2d — 1)2P' /(An2¢/(1+)) 4 4(2d — 1)/P' [n2/(0+6) 1 4A +

IN

and

13

4+ 1/A+2+/P'JA+2(2d — 1)/ P’ /n2e/(1+€) [A,
Since, 1 < A < n¢, we have that

D(n) < P +c3dP'/\/n2/0+) 4 c,V/ne P! + csd? P! Jn?/ (1) 4 cg P! </ (1+e)

+crdy/ P! /n2¢/(14€) + cgn® + cg + c10V P’

where c3,cq4,...,cC10 are some constants.

Since P’ < ¢in,
D(n) < P'+cadein/Vn2e/(+€) 4 cp\/néein + C5d261n/n26/(1+6) + c6c1n/n26/(1+6)

+erdy/ein/n2/ (49 4 cgn® + g + c10y/c1n'/?

= P esdern (19 4 ea /a2 4 oo dern(-9/ (46 | gooi (1= (140
+07d\/an(176)/(2(1+5)) +Csne+09+010\/an1/2
< P epnF9/2 4 opdnt/ 049 4oy d?n(-9/(+)

where c11, €12, and c13 are large enough constants (because, since 0 < §/(1-0) < e < 1, (1—e)/(2(1+¢€)) <
(1-¢e)/(1+¢€ <1/(1+€),e<(1+¢€)/2,and 1/2 < (1+¢€)/2).

Because d = O(n‘s), for a large enough constant ng, there exist constants ci4 and c;5 such that for all
n > ng, D(n) < P’ + e n(He/2 4 o ,pd+H1/(+e) 4 o) n26+(1=€)/(1+e)

P’ =cin — coanP2178 = ¢yn — canP (1 + c16), where cy6 is a constant such that 1+ c16 = 2175,

Hence, D(n) < c1n — canP (1 + c16) + c1in(1H9)/2 4 ¢ qndT1/AFe) 4 ¢ n20+0-€)/(te) — ¢y — cynf —
(c16n? — c11n(1H9/2 — ¢ nd+1/(+e) _ ¢ n20+(1-€)/(1+€)) Thus, for a large enough constant ng, and large
enough 3, where 1 > 8 > max{(1+4¢€)/2,0+1/(1+€),26+(1—¢€)/(1+€)}, for all n > ng, c16n? —c1n(t+e/2 —
c1and /04 _ ¢5n20+(-)/(1+€) > 0, and hence D(n) < c¢in — con®. Note that because € > §/(1 — §),
0+1/(14+¢€) <land 25+ (1 —€)/(1+€) <1, and because e < 1, (1+¢€)/2 < 1.

The proof for the case A < 1 uses the same reasoning as for the case A > 1. With Ty, R, Wi, Hg, R/,
W', H', R, W, and H defined as above, and Ay as defined in Section 5.2, we get the following values for
Wi, Hi, W', H', W, H, and D(n):

W, < VAP

H, < 4/P'/n2/(1+¢) if T} is a small partial tree

< zx/P'/A if T} is a large partial tree

W' < VAP 42

H < P’/A+(2d—1)\/P’/n26/(1+6)+1

W < VAP +2+ (2d— 1)Ay/P'/n2/(0+9) + A

H < /PJA+ (2d—1)y/P'/n2/(+e) 414 2/A

D(n) S Pl+clln(1+e)/2 +cl4n5+l/(1+e) +615n25+(176)/(1+e)

where c11, c14, and c15 are the same constants as in the case A > 1. Therefore, D(n) < cin— conP for A< 1
too. (Notice that in the values that we get above for Wy, Hy, W', H', W, and H, if we replace A by 1/A,
exchange W}, with Hy, exchange W’ with H’, and exchange W with H, we will get the same values for Wy,
Hy, W, H', W, and H as in the case A > 1. This basically reflects the fact that the cases A > 1and A < 1
are symmetrical to each other.) O

Theorem 2 (Main Theorem) Let T be an n-node degree-d tree, where d = O(n®) is a positive integer
and 0 < & < 1/2 is a constant. Given any number A, where n=® < A < n®, for some constant o, where
0 < a < 1, we can construct in O(nlogn) time, a planar straight-line grid drawing of T with O(n) area, and
aspect ratio A.

14

Proof: Let € be a constant such that n ¢ < A < n€ and §/(1 — §) < € < 1. Designate any leaf of T as its
link node. Construct a drawing " of T in R by calling Algorithm DrawTree with T', A and € as input. From
Lemmas 1, 2, and 4, I" will be a planar straight-line grid drawing of T' contained entirely within a rectangle
with O(n) area, and aspect ratio A. O

Corollary 1 Let T be an n-node degree-d tree, where d = O(n®) is a positive integer and 0 < § < 1/2 is a
constant.. We can construct in O(nlogn) time, a planar straight-line grid drawing of T with optimal (equal
to O(n)) area, and optimal aspect ratio (equal to 1).

Proof: Immediate from Theorem 2, with A = 1. O

References
[1] T. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing area and aspect ratio in straight-
line orthogonal tree drawings. Comput. Geom. Theory Appl., 23:153-162, 2002.
[2] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings
of binary trees. Comput. Geom. Theory Appl., 2:187-200, 1992.

[3] P. Crescenzi, P. Penna, and A. Piperno. Linear-area upward drawings of AVL trees. Comput. Geom.
Theory Appl., 9:25-42, 1998. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamas-
sia).

[4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle
River, NJ, 1999.

[6] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings with optimal area. Internat.
J. Comput. Geom. Appl., 6:333-356, 1996.

[6] A. Garg and A. Rusu. Straight-line drawings of binary trees with linear area and arbitrary aspect
ratio. In Michael T. Goodrich and Stephen G. Kobourov, editors, Graph Drawing (Proceedings of 10tk
International Sympsium on Graph Drawing, 2002), volume 2528 of Lecture Notes in Computer Science,
pages 320-331. Springer-Verlag, 2002.

[7] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st Annu. IEEE Sympos. Found.
Comput. Sci., pages 270-281, 1980.

[8] M. Sarkar and M. H. Brown. Graphical fisheye views. Commun. ACM, 37(12):73-84, 1994.

[9] C.-S. Shin, S.K. Kim, S.-H. Kim, and K.-Y. Chwa. Area-efficient algorithms for straight-line tree
drawings. Comput. Geom. Theory Appl., 15:175-200, 2000.

[10] L. Trevisan. A note on minimum-area upward drawing of complete and Fibonacci trees. Inform. Process.
Lett., 57(5):231-236, 1996.

[11] L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput., C-30(2):135-140, 1981.

15

